
Genome-wide assessment of genetic modifiers in ALS progression

Brain Center **Rudolf Magnus**

Ramona Zwamborn¹, Michelle de Groot¹, Project MinE sequencing consortium, Wouter van Rheenen¹, Jan Veldink¹

1) Department of Neurology, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands.

Introduction

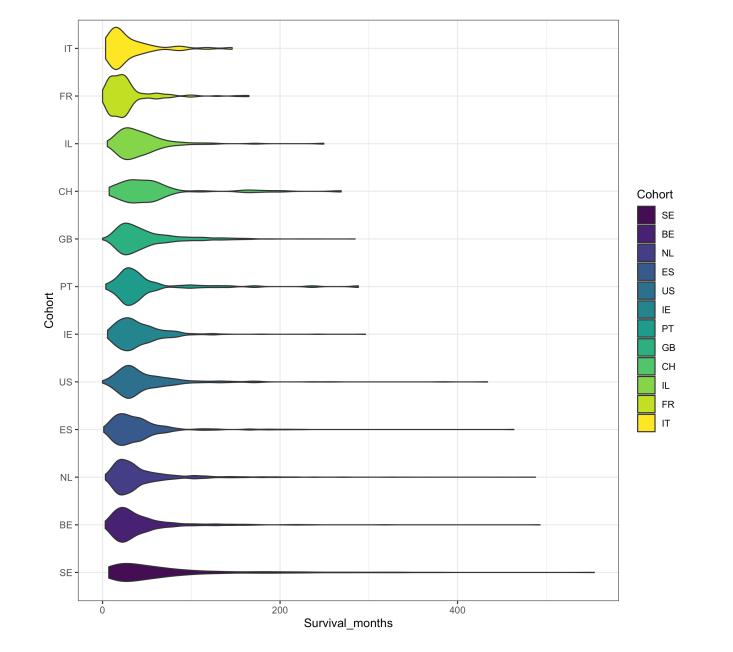
Objectives and methods

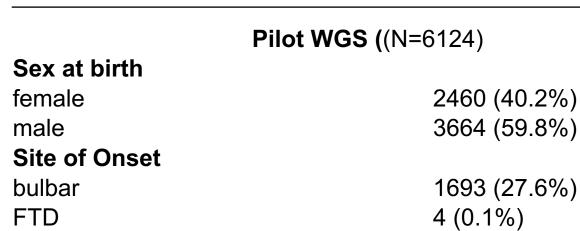
Largest genome-wide association study in amyotrophic lateral

We aim to unravel the genetic architecture of disease progression and more specifically to identify SNPs and biological processes associated with ALS progression

- sclerosis (ALS) (n=29,612 patients), identified **15 SNPs** significantly related to ALS risk (1).
- The identified SNPs showed overall **little effect on ALS progression** individually or when used as constructed polygenic risk scores (PRS).
- This could imply **different biological mechanisms** are involved in ALS susceptibility compared to ALS progression which could have extensive therapeutic consequences.

To achieve this we:


- Collected and harmonized clinical and genotyping data
- Adopted a cox proportional hazards model in a mixed **model framework** correcting for population structure, relatedness and added site of onset, cohort, platform, sex, and PC1-20 as covariates (2).


Results

Step 1: Phenotyping QC:

Biologically invalid values, extreme/inconsistent values. Step 2: Genotype QC:

MAF> 0.01, remove duplicate samples, no imputation

Step 3: Cox proportional hazards mixed model (SAIGE)

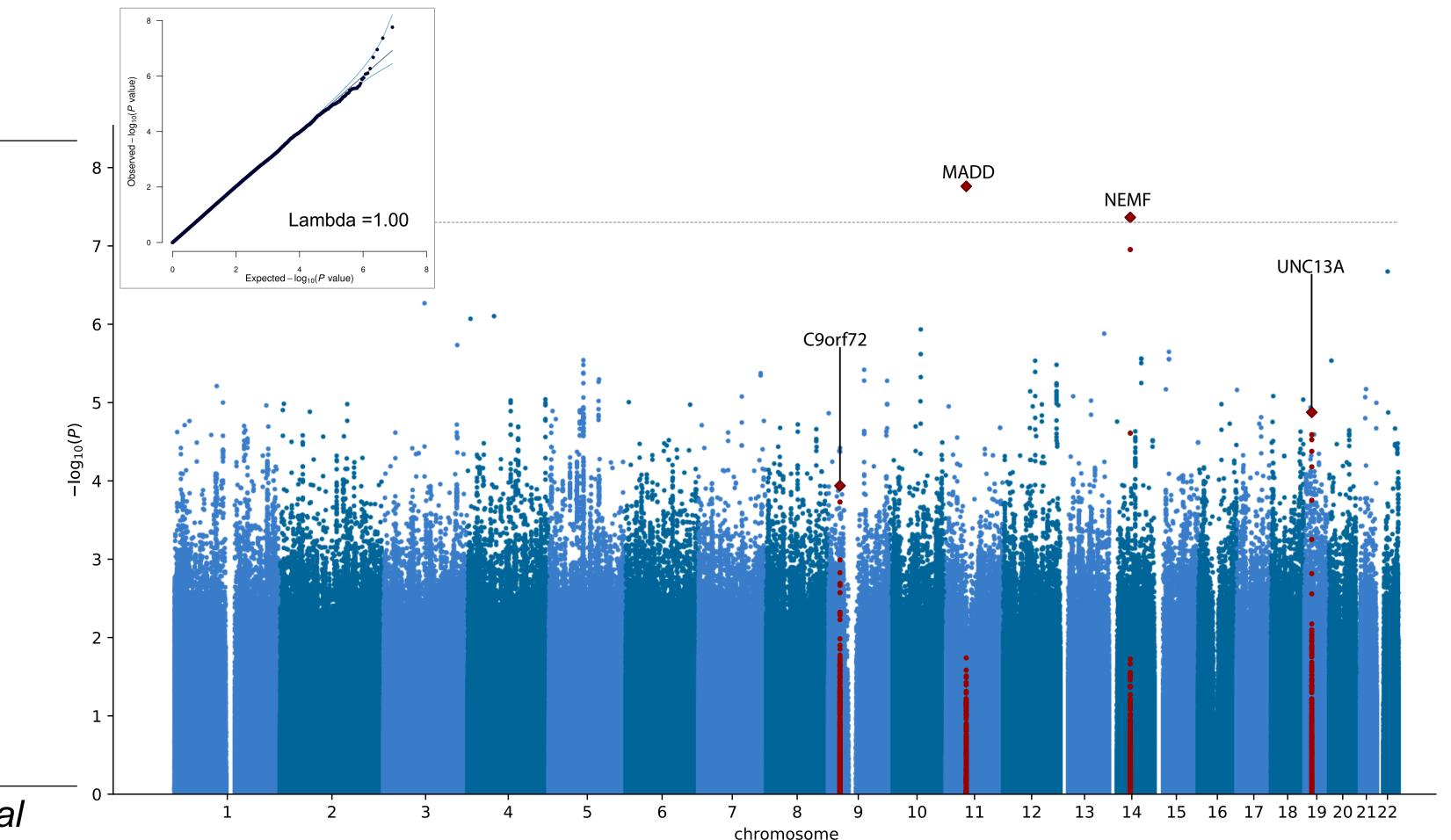


Figure 1: Survival of samples included in the pilot, separated by cohort.

Total sample overview		Remark	Table 1: Den
MinE WGS (17 cohorts)	6,124	analyzed	charac
NYGC-GTAC	3,000	ready2go	
MinE GWAS (13 cohorts)	6,940	Matched >4,000	
MinE 2022	600	in progress	
NL WGS	1,000	in progress	
New collaborators?	?	Please cor have data	ntact us if you
Total	17,500+	nave uala	avialable
Table 2: Total overv	iew of (exp	pected sampl	le size)
	*		1 - 4

separated b	y stratum.	*included	in the	pilot
				-

Discussion

generalized	215 (3.5%)	
spinal	4028 (65.8%)	
thoracic/respiratory	109 (1.8%)	
Age at onset years		
Mean (SD)	60.4 (12.5)	(<i>a</i>)
Median [Min, Max]	61.8 [5.69, 100]	<u></u>
Survival (months)		
Mean (SD)	44.3 (42.7)	
Median [Min, Max]	32.0 [0, 554]	
Survival status		
alive	1532 (25.0%)	
dead	4592 (75.0%)	
C9ORF72 Status consensus		
expanded	354 (5.8%)	
inconsistent	32 (0.5%)	
intermediate	18 (0.3%)	
normal	5719 (93.4%)	
Table 1: Demograp	phic and clinica	

characteristics of pilot.

Figure 2: Manhattan from N=6,124 ALS patients with matching WGS and clinical data (no imputation, MAF>0.01). Nearest gene annotation (except for C9orf72). Identified two new low-frequency SNPs (MAF= 0.008/0.015).

Future directions

- We are currently collecting clinical and genotype data for 10,000 ALS patients (17,500+ including pilot)
- Correct for SNPs known to influence survival (C9orf72)
- Combine with our repeat expansion imputation panel (under development)
- This analysis identified two significant low-frequency SNPs on chromosomes 11 and 14 just passing genome-wide significance, not seen before in our case control GWAS
- **Confirmed previously identified signals** for C9orf72 and UNC13A (although not genome-wide significant).

This motivates further increasing sample size for future analyses.

Literature:

- van Rheenen et al., "Common and Rare Variant Association Analyses in Amyotrophic Lateral Sclerosis Identify 15 Risk Loci with Distinct Genetic Architectures and Neuron-Specific Biology."
- Dey et al., "An Efficient and Accurate Frailty Model Approach for Genome-Wide Survival Association Analysis Controlling for Population Structure and Relatedness in Large-Scale Biobanks.'
 - Iniversity Medical Center Utrecht

Investigate the genetic correlations with susceptibility GWAS Heritability

End goal: Identification of new therapeutic targets specifically related to ALS progression.

Contact: R.A.J.Zwamborn-3@umcutrecht.nl