Large HLA disease association study with more than 50,000 controls shows protective effects for HLA-B*40:01 and C*03:04 in NPM1 mutated AML

Elke Rücker-Braun1,2, Bose Falk3, Henning Baldau2, Carolin Massalski3, Gesine Schäfer4, Heidi Altmann2, Jürgen Sauter5, Ute Solloch5, Vinzenz Lange5, Friedrich Stötzl5, Christoph Röllig1, Moritz J. Middeke5, Malte von Bonin2, Christian Thiede1, Alexander H. Schmidt5, Martin Bornhäuser2, Johannes Schetelig1,2, Falk Heidenreich1,2

1 Medical Clinic I, University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany, 2 Clinical Trials Unit, DKMS GmbH, Dresden, Germany, 3 Analysis, DKMS Life Science Lab GmbH, Dresden, Germany, 4 Research & Development, DKMS Life Science Lab GmbH, Dresden, Germany, 5 Scientific Projects, DKMS GmbH, Tübingen, Germany, 6 Scientific Projects, DKMS Life Science Lab GmbH, Dresden, Germany, 7 Management Team, DKMS Life Science Lab GmbH, Dresden, Germany, 8 Executive Department, DKMS GmbH, Tübingen, Germany

Background
Mutations in the nucleophosmin 1 gene (NPM1) are common and recurrent molecular abnormalities in acute myeloid leukemia (AML). They are considered to be positive prognostic factors potentially due to immune responses mediated by NPM1 mutation (NPM1mut)-specific cytotoxic T cells and thereby suppressing NPM1mut-positive hematopoiesis. Here, in a large HLA association study we compared the distribution of HLA class I alleles at 2-field-resolution between NPM1mut AML patients (n=471) and a control group of healthy individuals (n=51,890). HLA class I molecules of alleles which are underrepresented might present NPM1mut-derived neoepitopes more effectively and have the potential to elicit an anti-leukemic immune response.

Geno- type
NPM1 genotyping of patient samples with polymerase chain reaction (PCR) amplification of NPM1 exon 12

HLA genotyping with high-resolution amplicon-based approach using Illumina devices

Data Samples

<table>
<thead>
<tr>
<th>Condition</th>
<th>AML patients</th>
<th>Healthy Donor (Lifetime Risk of AML < 1%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample Size</td>
<td>1,704</td>
<td>51,890</td>
</tr>
<tr>
<td>Population</td>
<td>German, 18-79</td>
<td>German, 19-59</td>
</tr>
<tr>
<td>Source</td>
<td>SAI Biobank and Cobi, www.cobi-biobank.de</td>
<td>DKMS donor registry</td>
</tr>
</tbody>
</table>

Protective effect of HLA-A*02:01, B*15:01, B*40:01 and C*03:04 in AML patients with NPM1 mutation

Frequencies of the ten most frequent HLA-A, -B and -C alleles in AML patients with (grey bars) and without (green bars) NPM1 mutation A/D and in healthy donors (blue bars). Adjusted p-values are depicted above the columns.

Who is the driver of immune surveillance?

Frequencies of HLA-B*40:01-positive, HLA-C*03:04-positive, and HLA-B*40:01-negative-HLA-C*03:04-positive AML patients (grey and green bars) in comparison to healthy donors (blue bars). Adjusted p-values are given above the columns.

Conclusions
We found HLA-B*40:01 and HLA-C*03:04 underrepresented in NPM1 mutated AML suggesting that neoepitopes presented by these HLA alleles trigger T cell responses. NetMHCpan version 4.1 predicts that NPM1mut-derived immunopeptides bind strongly HLA-B*40:01 and weakly C*03:04. Relative linkage disequilibrium was shown for HLA-B*40:01 and HLA-C*03:04, but we could not identify a strong impact for either HLA-B*40:01 or HLA-C*03:04. Our findings suggest that further studies are warranted to confirm the presence and functionality of neo-epitope specific T-cells.

Next Step
Identification and isolation of HLA-B*40:01 and HLA-C*03:04 restricted NPM1mut-specific CD8+ T cell clones

Collaborative Biobank, biobank@dkms.de, www.cobi-biobank.org