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2. Detect themes

3. Detect change

4. Check context

5. Calculate score per sentence, per theme

0. Clinical text

1. Split sentences

1. -
2. Symptom reduction: -1 (anxious) x -1 (less) + -1 

(depressed)  x -1 (less) = +2
3. General well-being: 1 (self-confidence) x 1 

(improved) = +1

1.- (did not pass previous step, no further analysis)
2.Todaycurrent, they were less anxious and depressed. 
3.Their participation in ward activities did notnegated 

improve, but they showed more self-confidence.  

1.Patient was admitted with severe anxietysymptom. 
2.Today, they were less anxioussymptom and 

depressedsymptom. 
3.Their participationsocial in ward activities did not 

improve, but they showed more 
self-confidencewell-being.  

1.Patient was admitted with severe anxiety. 
2.Today, they were lesschange anxious and depressed. 
3.Their participation in ward activities did not 

improvechange, but they showed morechange self-
confidence.  

1.Patient was admitted with severe anxiety. 
2.Today, they were less anxious and depressed. 
3.Their participation in ward activities did not 

improve, but they showed more self-confidence.  

Patient was admitted with severe anxiety. Today, 
they were less anxious and depressed. Their 
participation in ward activities did not improve, but 
they showed more self-confidence.  
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Feature extraction 
• Feature extraction from 

routinely written clinical 
text with the goal of 
pattern discovery is one of 
the core activities of the 
PsyData team

• Tools: MedCAT, SpaCy, 
Prodigy (example on the 
left), PsyNLP (rule-based 
context detection)

• On the left: a pipeline 
designed for extracting 
phrases concerning one of 
four treatment outcome 
themes at the psychiatry 
department (Turner et al., 
2022 [1])

Pattern discovery
• Bayesian networks: causal 

discovery in tabular data
• Allow for integrating expert 

knowledge: network on the 
right based on systematic 
review, psychiatrists’ input and 
UMCU data (Van der Does et 
al., 2023 [2]) and especially apt 
for learning across multiple 
facilities 

• Other projects: (deep) 
supervised learning, clustering, 
ensemble methods

Valid, real-time inference
• Traditional statistical techniques 

(p-value tests, standard 
confidence intervals) for inference 
and confirmatory research are not 
valid in a setting for continuous 
learning

• Developed new algorithms to 
perform valid hypothesis tests and 
estimate confidence intervals in 
real-time, across facilities

• Allows for continuously tracking 
study progress in a dashboard, to 
decide on best treatment as 
quickly as possible

Above: example of what a dashboard could 
look like for following real-time confidence 
intervals in a stratified study setup (such as 
ANOVA or a CMH setup) [3]
Below: example of a data stream in 
random order that can be analysed in a 
stratified study setup: after each data block 
can recalculate the confidence interval and 
p-value

Subgraph of the Bayesian network including all found 
predictors for remission of psychiatric pathology after 
electroconvulsive therapy (ECT), constructed with a 
combination of expert knowledge and UMCU data [2].

Learning across facilities
• Federated learning: let algorithms visit data in separate 

locations and combine at central location. Personal Health 
Train, Enabling Personalized Interventions framework (figure 
below [4])

• Future goal: create synthetic dataset and/ or add privacy 
preserving machine learning to pipelines for faster and 
easier collaboration with external parties 

psydata@umcutrecht.nl

The EPI framework 
[4]: tools and 
software to create 
a data 
infrastructure, 
regulatory 
constraints and 
federated learning 
algorithms to 
safely learn across 
multiple locations

Goal: from validation studies to 
implementation in routine 
clinical care
• First proof of concept: predicting 

aggression in collaboration with 
Parnassia Groep

• Requirements to move on from 
research stage (ideas? Contact us!):
• High quality software applications
• High quality data infrastructure 

between facilities
• Data readiness of participants (FHIR)


