
CONTINUOUS
INSPECTION

By Olivier Gaudin,
CEO & Co-Founder of SonarSource SA

A Paradigm Shift in Software

Quality Management

Copyright SonarSource S.A., 2013, Switzerland. All content is copyright protected.
All rights reserved. SONARSOURCE and SONARQUBE are trademarks of SonarSource SA.

All other trademarks and copyrights are the property of their respective owners.

CONTENTS

INTRODUCTION 1

KEY CHALLENGES IN 2
CODE QUALITY MANAGEMENT

ABOUT CONTINUOUS INSPECTION 3

CONCLUSION 6

s o n a r s o u r c e . c o m

INTRODUCTION
Software Quality is a matter of increasing concern for every commercial enterprise because of the
escalating role software plays in running business-critical systems. Software quality consists of both
external and internal quality. External, or functional, quality describes how well the software matches its
defined functional requirements – does it perform as intended? Internal quality describes key internal
attributes of the code, such as robustness, standards-compliance, and maintainability. Industry statistics
show that on average, 80% of the lifetime cost of a software product is spent on maintenance, and that
maintenance costs have a high variability depending on internal quality. This means that the level of
maintainability a software product has today will determine the level of its cost liability tomorrow.

Traditional approaches to code quality control involve so-called punctual audits or quality gates, which
are periodic audits of the source code. These audits are usually performed by external auditors during
the “last mile” of the development process – during or after the functional tests. By their nature,
punctual audits can lead to disruptions in the development cycle because they result in changes to
“completed” software. In the best case, this quality control approach leads to delays and rework. In the
worst case, it leads to the release of poor quality software. In either case, the traditional approach
fosters the perception that building quality software is overly complex and expensive.

There is an urgent need for a newer model, one that emphasizes quality throughout the development
cycle, and has shorter feedback loops to ensure rapid resolution of internal quality issues; in short, a
model that builds in quality from the start, rather than considering it after the fact.

Continuous Inspection is a holistic, fully-realized process designed to make internal code quality an
integral part of the software development life cycle. By raising its visibility for all stakeholders throughout
the life cycle, Continuous Inspection enables enterprises to embrace code quality whole-heartedly.
Supported by SonarSource, the Continuous Inspection paradigm is highly effective, and has been proven
to work in the real world at organizations ranging from small companies to Fortune 100 businesses,
across all industries. This paper details the key challenges in code quality management. It then
introduces the Continuous Inspection paradigm and illustrates how it addresses those challenges,
supporting thousands of enterprises in improving their software quality.

s o n a r s o u r c e . c o m

1

Punctual audits occur, by design, at specified intervals and not continuously. This approach to code
quality management has four major types of shortcomings, which will be detailed in this section.

Punctual audits identify two kinds of improvements: cosmetic and structural changes. Whereas
cosmetic changes require minor modifications, structural changes may include major software
re-engineering. While such changes may be needed, action plans resulting from punctual audits
are defined too late in the process to do anything but disrupt the development cycle; either the
software release date needs to be extended to include the software re-engineering, or worse the
software will be pushed to production with sub-par quality, and therefore have decreased main-
tainability and adaptability when new business requirements arise.

There is a clear lack of ownership of the quality process within the organization. Auditors cannot
own the process, because they neither own the code nor have control over issue resolution. Simi-
larly, the command-and-control nature of the model prevents the development team from owning
the process because it is not involved in the reviews. Thus you have two disconnected groups
which are both responsible for quality while neither of them is accountable.

Developers tend to push back on action plans generated from punctual audits, because they:

√ Are generated outside the team, and are seen as a new constraint in daily work

√ Are subjective; findings rely on the judgement of the auditors rather than on objective measures

√ Miss contextual and historical information, and are therefore seen as irrelevant

√ Are invalidated by on-going changes and quickly become out-dated

√ Do not involve developers and other stakeholders in the review & audit process

√ Intervene too late in the process; by the time a feature is audited, developers need to “relearn” the

 code to address a finding

KEY CHALLENGES IN
CODE QUALITY MANAGEMENT

Too Little, Too Late

Pushback from Development Teams

Lack of Process Ownership

Traditional approaches which measure software on absolute values, such as total number of issues
found during a quality gate, force evaluators to measure each application against different
requirements depending on its origin. For instance, a legacy project may not be held to the same high
quality standard expected of a greenfield project, and in-house development might be judged
differently than outsourced code. This is due to the fact that you still need to allow software to ship to
production, and requiring each project to reach the same absolute values for quality thresholds before
release is often impractical. Using such absolute values, it is almost impossible to work out common
requirements for all applications, and therefore difficult to adopt good practices across the board.

Heterogeneous Requirements

s o n a r s o u r c e . c o m

2

The challenges in code quality management outlined above combine to create an often self-fulfilling
perception that “creating quality software is expensive.” Under the traditional approach, quality
management comes too late in the process to be effective, and disrupts the development cycle, causing
unexpected delays, unplanned rework or missing features. Compounding the problem, development
teams push back on the quality assessments, which they see as reducing the team’s productivity and
collaboration. Furthermore, enterprises do not gain long-term improvements in overall quality, because
the traditional approach does not take into account the need to educate developers. As a result, the same
or similar quality issues arise repeatedly during the project lifecycle, and perhaps even from project to
project as developers are re-assigned within a company.

We, the founders of SonarSource, are quite familiar with the shortcomings of the traditional model,
having worked for many years within its confines. But with the rise of Continuous Integration, we
envisaged that a different model was possible. Just as continuously integrating the changes from
multiple developers prevents integration headaches, we realized that continuously applying the quality
gate standards prevents the problems of the punctual audit model.

Continuous Inspection is a new paradigm in code quality management designed to make internal
software quality an integral part of the software development lifecycle. It is a holistic, fully-realized
process which increases both the internal software quality of a project, and the visibility of software
quality for all stakeholders. Continuous Inspection provides continuous code quality management, and
drastically raises the ROI of a development project. The key concept in Continuous Inspection is finding
problems early–when fixing them is still cheap and easy. Under this model, automated code audits are
performed on a daily basis and made available within an organization. These objective, automated audits
analyze a project's code along multiple maintainability axes, test it for bugs, and compare it to team
coding standards. Audits are completed by tools that detect those issues directly in the developer's
environment, much like the spell checker in Microsoft Word. Team members are alerted as soon as new
issues are found so they can be addressed as quickly as possible–while the code is still fresh in the
developer's mind. The timeliness of these alerts has the added benefit of training coders out of bad
habits and leading them to good ones.

Continuous Inspection enjoys a grass-roots adoption among development teams, because its collaborative
nature leads to a truly collective code ownership, and helps teams deliver better software. With its small,
rapid cycles of issue identification and treatment, it has been proven to increase development team
efficiency, and raise the longevity of applications by fostering the development of higher-quality code.
The most important aspects of Continuous Inspection can be summed up in ten principles.

ABOUT CONTINUOUS INSPECTION

s o n a r s o u r c e . c o m

3

The Continuous Inspection paradigm is highly effective, and has been proven to work in the real world
for companies ranging from offshore software factories to Fortune 100 businesses. These companies
have successfully used the Continuous Inspection model to manage internal software quality on projects
of all sizes. One Fortune 100 company with more than 20,000 developers uses it to manage more than
600 million lines of code, in an environment where more than 5,000 applications are analyzed each day.
In all cases, Continuous Inspection has helped these companies significantly improve software quality
and stability, typically saving millions of dollars that would otherwise be spent on root cause analysis
and crisis management.

The 10 principles of Continuous Inspection:

All stakeholders in the development process – not just developers or managers - must have ready access
to meaningful data about software quality.

Managing software quality must be everyone’s concern from the beginning of development, but is the
development team's ultimate responsibility.

Software Quality must be part of the development process, meaning that meeting quality standards is one
of the hard requirements to be able to declare development complete.

Software Quality requirements must be objective and not require a subjective pass / fail decision.

As much as possible, software quality requirements must be common to all software products, regardless
of their specifics.

Software Quality data must be up to date, i.e. measured on the very latest version of the code.

Software products must be continuously inspected, so that errors are found quickly, when they are easy to
correct. Developers must be able to spot new quality flaws as soon as they are introduced, i.e. within the
IDE as they write code, similar to how spell checkers highlight misspellings.

Whether through push or pull, stakeholders must be alerted when new quality flaws are injected, whether
that's by sending email, breaking the build or by other methods. Injection of new issues must be tracked,
enabling teams to make quick, informed decisions about quality.

Software quality data must be available both as absolute (on all code) and differential (new code only)
values so that the development team can be in full control of the incoming flow of issues.

All new issues and existing critical issues must be assigned a clear path and timeline for resolution.

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

s o n a r s o u r c e . c o m

4

Continuous Inspection, the new software quality paradigm, addresses and resolves the key challenges
in code quality management:

Too little, too late

Pushback from
Development Teams

Lack of Process
Ownership

Heterogeneous
requirements

The team receives continuous feedback on quality, including against a set of
quality requirements
A clear, updated picture of quality evolution over time is available, including
comparisons among versions
Teams can track issues from introduction, and provide feedback
Stakeholders are notified of quality flaw injection as soon as it happens
The Quality Gate is executed daily
The final Quality Gate iteration becomes a non-event
Continuous education of developers leads to a virtuous circle of improvement

Quality Action Plans are generated directly within the team and integrated in
the development process
Software Quality is part of the development process
Reviews include contextual and historical information including different
versions and various changes made to the software
Stakeholders can access meaningful information about their software quality
in real time
Development teams receive information about quality flaws as soon as they are
added (via email, visible in the IDE, …) enabling issues to be fixed immediately
Teams gain the ability to develop better software

Ownership of code quality belongs to development team
Software quality is embedded in the development process and becomes
everyone’s responsibility
Access to the software quality tool is provided throughout the organization to
every stakeholder
Quality requirements can be shared, updated and reviewed among team
members and across the organization
Quality judgements are made in an automated fashion based on objective
criteria that were published to the organization beforehand.
Reporting clearly shows software maintainability, and is immediately
understandable without the need for external consultants
Ongoing education of developers leads to significant software quality
improvements in the long run

Teams have the ability to measure Software Quality on new and changed
code as well as on the entire code base
Teams can track injection of new issues

√

√

√
√
√
√
√

√

√
√

√

√

√

√
√

√

√

√

√

√

√

√

Solution Offered by Continuous InspectionKey Challenges

s o n a r s o u r c e . c o m

5

Designed and realized by SonarSource, Continuous Inspection of internal quality is a holistic,
fully-realized process designed to make code quality an integral part of the software development life
cycle and raise its visibility for all stakeholders throughout the life cycle. The Continuous Inspection
paradigm is highly effective, and has been proven to work in the real world, across all industries at
organizations ranging from one-man shops to Fortune 100 businesses.

Continuous Inspection is a new model for software quality, one that incorporates shorter feedback loops
to ensure rapid resolution of quality issues. In short, it is a model that builds in quality from the start,
rather than considering it after the fact. With Continuous Inspection, quality flaws are found – and
corrected – very early in the development process, while the impacts are small and manageable. Some
problems will be caught in the developer's IDE, before ever being checked in. The rest will be reported
within a day, while the code is still fresh in the developer's mind and the fix is still cheap and easy. This
quick feedback cycle has the double benefit of improving quality and educating developers.

Continuous Inspection fits well into both agile and waterfall development environments, and addresses
the shortcomings of the traditional approach. Continuous Inspection offers improved quality with
minimum disruption to the development process and time line.

Continuous Inspection fosters stronger team collaboration and productivity, and engenders a strong
sense of team ownership of code quality because the quality process, like the code itself, is owned by
the team. Where punctual audits are derided for being quickly out of date and ignoring the incremental
nature of software development, Continuous Inspection provides an immediacy and a clear picture of
software quality over time.

With Continuous Inspection, the perceived cost of quality is zero because quality is blended so
seamlessly into the development process itself. With Continuous Inspection, enterprises can finally
embrace code quality whole-heartedly and maximize their software ROI.

CONCLUSION

SonarSource SA
Carrefour de Rive 2
1207 Geneva, Switzerland

Tel: +41 (0)22 510 2424
Email: contact@sonarsource.com

Web: www.sonarsource.com

s o n a r s o u r c e . c o m

6

