
A common bypass
pattern to exploit
modern web apps

@sonarsource | © SonarSource 2021

whoami
● My name is Simon Scannell
● Vulnerability Researcher for SonarSource
● Discover and disclose vulnerabilities

○ WordPress
○ Magento 2
○ MyBB
○ Zimbra
○ Linux kernel

● Likes to travel

Some of our recent work
● WordPress: CSRF to Remote Code Execution (CVE-2019-9787)

● Magento 2: pre-auth Stored XSS to RCE (CVE-2019-7877 & CVE-2019-7932)

● MyBB: unprivileged Stored XSS to RCE (CVE-2021-27889 & CVE-2021-27890)

● Zimbra: Webmail compromise via eMail (CVE-2021-35208 & CVE-2021-35209)

Some of our recent work
… continued

Some of these open source applications have been
hardened through...

○ Years of bug bounty programs
○ Competition in the 0day market
○ Static Analyzers
○ Security Audits

… Yet, the bugs still occur. Why?

How the way we find web security
bugs is changing

Dramatic increase in adaption of:
○ Mitigations
○ secure-by-default frameworks
○ sanitization libraries
○ ensuring overall security checks

How the way we find web security
bugs is changing

● When a new mitigation or sanitization framework is
deployed, we have to look for bugs in places that are
not covered by the new mitigation

● This forces us to improve security research and invent
new ways to find vulnerabilities

How the way we find web security
bugs is changing

● Parser differentials
● Undefined or unclear components of a spec
● Time of check / Time of use

How the way we find web security
bugs is changing

● Parser differentials
● Undefined or unclear components of a spec
● Time of check / Time of use

=> The same old vulnerabilities are still there, just the way
we find them changes

How the way we find web security
bugs is changing

● Parser differentials
● Undefined aspects of a spec
● Time of check / Time of use
● Modification of sanitized data

Let’s build a model for finding bugs

An abstraction of web security bugs

 data = sanitize(user_input);

 use(data);

An abstraction of web security bugs

// secure example

data = transform(user_input);

data = normalize(data);

data = sanitize(data);

use(data);

An abstraction of web security bugs

// secure example

data = transform(user_input);

data = normalize(data);

data = sanitize(data);

use(data);

Examples of transformations

● Converting shortcodes to HTML
○ [b]Hello Hacktivity![/b] => Hello Hacktivity!

● Modifying or adding HTML attributes to an HTML string
● Censoring of text
● Auto URL highlighting
● Language translations

An abstraction of web security bugs

// secure example

 data = transform(user_input);

 data = normalize(data);

 data = sanitize(data);

 use(data);

Examples of normalizations

● Unicode normalization
● Path normalization

○ (/var/www/html/../../../tmp => /tmp)
○ Converting \\ to / (Windows / Unix differences)

● Length truncations
● URL encoding / decoding

An abstraction of web security bugs

// secure example

 data = transform(user_input);

 data = normalize(data);

 data = sanitize(data);

 use(data);

Examples of sanitization

● Extension checks
● HTML escaping
● Escaping inputs for SQL queries
● Validating input against allow-list

What could possibly go wrong?

Modification of sanitized data

 // possibly insecure example

 data = sanitize(user_input);

 data = normalize(data);

 data = transform(data);

 use(data);

Modification of sanitized data

● When modification of sanitized data occurs, the
effects of sanitization could be negated

Modification of sanitized data

Sanitization should always be the very last step before
using data…

Modification of sanitized data

… However,
● Sanitized data tends to be trusted and used less

carefully
● It isn’t always obvious if, how and where data is

modified after it has been sanitized

Case studies

Case Study #1 - Zimbra Webmail

● Enterprise ready webmail solution
● Used by over 200.000 businesses, government and

financial institutions
● Recent target of a 0day campaign by what is

suspected to be a state-actor.
● Email bodies can contain arbitrary HTML code and

must be carefully sanitized by a webmail solution

Case Study #1 - Zimbra Webmail

● We discovered a XSS vulnerability in the email body
and a SSRF vulnerability that allowed stealing cloud
provider credentials (e.g. AWS, Google Cloud)

● => One email is enough to potentially take over an
email server of an organization

Demo

Case Study #1 - Zimbra Webmail
Sanitization

● Server-Side sanitization of HTML in email body
● Uses allow-list of HTML tags and attributes
● OWASP Java HTML Sanitizer is used
● We did not discover a bypass in this HTML sanitizer

framework

Additionally, very strict encoding...

 // """ is shorter than """

 REPLACEMENTS['"'] = "&#" + ((int) '"') + ";"; // Attribute delimiter.

 REPLACEMENTS['&'] = "&"; // HTML special.

 // We don't use ' since it is not in the HTML&XML intersection

 REPLACEMENTS['\''] = "&#" + ((int) '\'') + ";"; // Attribute delimiter.

 REPLACEMENTS['+'] = "&#" + ((int) '+') + ";"; // UTF-7 special.

 REPLACEMENTS['<'] = "<"; // HTML special.

 REPLACEMENTS['='] = "&#" + ((int) '=') + ";"; // Special in attributes.

 REPLACEMENTS['>'] = ">"; // HTML special.

 REPLACEMENTS['@'] = "&#" + ((int) '@') + ";"; // Conditional compilation.

 REPLACEMENTS['`'] = "&#" + ((int) '`') + ";"; // Attribute delimiter.

Case Study #1 - Zimbra Webmail

● We realized we had to look for some place where the
sanitized HTML output was modified

● We found a code snippet in a JavaScript file located in
another repository that does just this

Case Study #1 - Zimbra Webmail
Normalization

● Emails can contain calendar invites
● If such an invite was present, the frontend JavaScript

file was used to truncate the HTML description of the
invite

Checking for a calendar invite

 // first let's check for invite notes and use as content if present

 if (hasInviteContent && !hasMultipleBodyParts) {

 if (!msg.getMimeHeader(ZmMailMsg.HDR_INREPLYTO)) {

 content = ZmIMsgView.truncateBodyContent(content, isHtml);

 }

 }

Wrapping the content in DIV tags

 // ...

 var divEle = document.createElement("div");

 divEle.innerHTML = content;

 var node = Dwt.byId("separatorId",divEle);

 // ...

 return divEle.innerHTML;

Case Study #1 - Zimbra Webmail
Normalization

● Setting the user-controlled (and sanitized) HTML
content to .innerHTML of a wrapping div decodes
HTML entities in user-controlled data

● This does not lead to XSS directly but is important for
the next step

Case Study #1 - Zimbra Webmail
Transformations

● The JavaScript front-end looks for <form> tags without
an action attribute

● Emails can contain <form> tags and if no action
attribute is present, the request is sent to the current
location and thus CSRF attacks could be forged

● The Javascript code sets a default action attribute

Looking for <form> tags via regex
 if (html.search(/(<form)(?![^>]+action)(.*?>)/g)) {

 html = html.replace(/(<form)(?![^>]+action)(.*?>)/ig,

 function(form) {

 if (form.match(/target/g)) {

 form = form.replace(/(<.*)(target=.*)(.*>)/g,

'$1action="SAMEHOSTFORMPOST-BLOCKED" target="_blank"$3');

 }

 else {

 form = form.replace(/(<form)(?![^>]+action)(.*?>)/g, '$1

action="SAMEHOSTFORMPOST-BLOCKED" target="_blank"$2');

 }

 return form;

 });

 }

Let’s assume the following HTML in an
email:

<hr

 align="<form > x"

 noshade="<script>alert(document.domain);//"

 />

After sanitization:

 <hr

 align="<form > x"

 noshade="<script>alert(document.domain);//"

 />

After normalization:

<hr

 align="<form > x"

 noshade="<script>alert(document.domain);//"

 />

After regex replacements:

<hr

 align="<form action="SAMEHOSTFORMPOST-BLOCKED"

 target="_blank" > x"

noshade="<script>alert(document.domain);alert(document.coo

kie);//"></div>

Zimbra Summary
 // server-side allow list

 data = sanitize(user_input);

 // .innerHTML normalization

 data = normalize(data);

 // <form> replacements

 data = transform(data);

 // display email to users

 use(data);

Case Study #2 - WordPress

● At the time of writing, over 43% of websites use
WordPress

● Has a comment form enabled by default, which can
contain raw HTML code

● We discovered a chain of vulnerabilities leading to CSRF
to RCE impact in default settings (CVE-2019-9787)

● At the time, SameSite cookies weren’t enforced

Case Study #2 - WordPress
Background

● Comment form is not protected by a nonce
● Can contain raw HTML code, becomes sanitized
● Sanitization rules relaxed for admins, but still secure

Case Study #2 - WordPress
Sanitization

● WP sanitizer has been hardened over the years
● Uses an allow-list for HTML tags and attributes. One

for admins and one for unauthenticated users
● We did not discover a bypass for the sanitizer

=> We looked for a place where comments are modified
after the sanitization step

Case Study #2 - WordPress
Transformation

● Comments could contain <a> tags
● For SEO optimization purposes, WordPress modified

the rel attribute, if present
● Only administrators could set rel attribute values. The

CSRF indirection was thus needed

Case Study #2 - WordPress
Transformation

● WP parsed the <a> tags of the already sanitized
comment and created key value pairs of their attribute
values

● The <a> tags are then constructed back together...

The rel attribute modification:

 if (!empty($atts['rel'])) {

 // the processing of the 'rel' attribute happens here

 // ...

 $text = '';

 foreach ($atts as $name => $value) {

 $text .= $name . '="' . $value . '" ';

 }

 }

 return '<a ' . $text . ' rel="' . $rel . '">';

Let’s assume the following input:

After the <a> tag has been build back
together: tt

WordPress summary

// sanitize the comment

 data = sanitize(user_input);

 // process 'rel' attributes

 data = transform(data);

 // display the comment

 use(data);

Demo

Case Study #3 - Magento 2

● Magento 2 stores handle hundreds of billions of
dollars in annual transactions

● Popular target for hacking groups motivated by
financial gain

● e.g. Magecart has been observed to utilize 0days
against Magento 2 stores

Case Study #3 - Magento 2
Sanitization

● Low privileged employees could create XML sitemap
files

● The filenames had to end with the .xml extension
● The filename and content were stored in the database
● When desired, the sitemap file could then be generated

and written to disk
● The filename check was secure

Case Study #3 - Magento 2
Normalization

● The database column for the filename was limited to
32 characters

● The database driver class would truncate the filename
to 32 characters if it was too long

Case Study #3 - Magento 2
Normalization

● aaaaaaaaaaaaaaaaaaaaaaaaaaaa.php.xml
would be truncated to
aaaaaaaaaaaaaaaaaaaaaaaaaaaa.php

● RCE via file write

Magento 2 summary

 // enforce.xml extension

 data = sanitize(user_input);

 // truncate to 32 chars

 data = normalize(data);

 // write sitemap to disk

 use(data);

Demo

Summary

● Abstracting vulnerabilities helps find bugs in highly
complex and large code bases

● Abstraction helps keeping the big picture in mind when
auditing big projects

● Look for places where sanitized data is modified
● Sanitization must always be the last step

Thank you!

● Blog posts and more at: blog.sonarsource.com
● We would love your help at SonarSource to find bugs in

projects! Come talk to us :)
● Reach out to me on Twitter: @scannell_simon

https://blog.sonarsource.com
#

Questions?

