

Release Note

Release Date: June 2024 Product Version: GTS NX 2024(v1.1)

Integrated Solver Optimized for the next generation 64-bit platform Finite Element Solutions for Geotechnical Engineering

Enhancements

Analysis

- 1.1 Bowl Model
- 1.2 Multiple Shear Mechanism Consideration Option
- 1.3 Fluid Element(Sloshing)
- 1.4 SRM Inclusion Elements
- 1.5 Rayleigh Damping by Element(Material)
- 1.6 Newmark-β Method
- 1.7 Coupled Stress, Seepage and Time History Analyses
- 1.8 Saturated an Unsaturated Soil Properties

Integrated Solver Optimized for the next generation 64-bit platform Finite Element Solutions for Geotechnical Engineering

Enhancements

Pre/Post Processing

- 2.1 Material Evaluator (Bowl/RO/HD/GHE-S Models)
- 2.2 Skin Friction vs Depth in Pile Interface
- 2.3 Plastic Status Contour Improvement
- 2.4 Tunnel Lining Plots
- 2.5 Geometry And Mesh Connection (Geo-Relation)
- 2.6 Random Setting of Dynamic Analysis Output Time
- 2.7 Dynamic Analysis Min/Max value occurrence time output
- 2.8 Improve Dynamic Analysis ABSOLUTE MAX (Absolute value output)
- 2.9 Customization of Results Display
- 2.10 Body Force
- 2.11 HD/RO/GHE-S Function (Confining Pressure)
- 2.12 Accessing the Load Combination & Convert to Loadset
- s
- 2.13 Construction Stage Wizard Function Improvement
- 2.14 Additional Construction Stage Type
- 2.15 Initial Equilibrium Force and Initial Stress Table Functio
- ns
- 2.16 Multiple Copy Objects Relative to Base Point
- 2.17 Hinge (M-Φ Data) Assign Table
- 2.18 Midas Civil Inelastic Hinge Data
- 2.19 Analysis Log Visualization
- 2.20 Nastran file Export

Integrated Solver Optimized for the next generation 64-bit platform Finite Element Solutions for Geotechnical Engineering

This model was proposed by Fukutake & Matsuoka to model multidirectional simple shear-induced dilatancy and is applied to the Modified Ramberg-Osgood m odel to consider liquefaction due to seismic loading.

The incremental volume deformation of soil is generally composed of the incremental deformation due to shear an d the incremental deformation due to compression $\varepsilon_{\text{tot}}^s + \varepsilon_{\text{tot}}^c$

Volumetric deformation by shear $\varepsilon_{\text{tot}}^s = \varepsilon_{\text{tot}}^{\Gamma} + \varepsilon_{\text{tot}}^{G^*}$

In the Bowl model, when shear occurs, soil particles are co nsidered to move along the bowl as they rise in contact wi th surrounding particles. : $\varepsilon_{\nu}^{\Gamma} = A\Gamma^{B}$

Also, the bowl itself undergoes volumetric deformation as shear disturbance occurs, compressing outward.

$$
S_{\text{val}}^{\sigma} = \frac{G^*}{C + DG^*}
$$

Volumetric deformation due to compression is determined by the relationship between the initial mean effective stres s and the current mean effective stress of the bowl model:

$$
\varepsilon_{\text{sol}}^c = \frac{C_s}{1 + e_0} \log \frac{\sigma_{b,m}}{\sigma_{0,m}}
$$

Assuming the condition of no drainage, the mean effectiv e stress of the Bowl model at the state where total volume tric deformation becomes 0 would be...

 $\sigma_{\text{max}} = \sigma_{\text{max}} \cdot 10^{-C_r}$

Using the average effective stress of the bowl model, the parameters of the modified Ramberg-Osgood model are modified to match the current ground condition, considering the liquefaction effect.

Compared to other material models, it has fewer parameters, can be easily determined from experimental values and estimated values, and has a short analysis time, so it is a liquefaction model that can be easily used in practice.

Mesh > Prop./Csys./Func. > Material

B Ag Layers → Modified Ramberg-Osgood+Bowl Model Ac Ds Dc Layers → Modified Ramberg-Osgood Model

During an earthquake in the depth direction, it can be confirmed that the acceleration is attenuated, and the displacement increases through the response on t he maximum acceleration and maximum displacement indicators.

Mesh > Prop./Csys./Func. > MaterialMax Horizontal Acc.[gal] Max Horizontal Disp.[cm] 1UO \cup **UUC** 1000 \cup UC Ω Ω B -10 -10 $\overline{}$ -20 -20 $A\!c$ $\overline{}$ -30 -30 Ag Depth of field [m] -40 Depth of field [m] -40 Depth of field [m] Depth of field [m] Ds -50 -50 -60 -60 $\overline{}$ -70 -70 Dc -80 -80 -90 -90

As the acceleration of the focal point is transmitted to the surface, In the liquefaction layer, excess pore water pressure increases and shear stiffness decreases. This can be confirmed from the shear stress-shear strain relationship.

1.2 Multiple Shear Mechanism Consideration Option

The option considering multi-shear mechanisms allows for an extension of functionality in material models (such as the Modified Ramberg-Osgood model, Mod ified Hardin-Drnevich model, GHE-S model), where only shear stress is considered. This extension enables the reflection of the rotation of the principal stress ax es in the material model.

Analysis > Analysis Case > General > Analysis Type : Nonlinear Analysis/ Construction Stage Analysis / Nonlinear Time History Analysis / Nonlinear Time History Analysis + SRM > Analysis Control

1.2 Multiple Shear Mechanism Consideration Option

The option considering multi-shear mechanisms allows for an extension of functionality in material models (such as the Modified Ramberg-Osgood model, Mod ified Hardin-Drnevich model, GHE-S model), where only shear stress is considered. This extension enables the reflection of the rotation of the principal stress ax es in the material model.

Analysis > Analysis Case > General > Analysis Type : Nonlinear Analysis/ Construction Stage Analysis / Nonlinear Time History Analysis / Nonlinear Time History Analysis + SRM > Analysis Control

1.2 Multiple Shear Mechanism Consideration Option

The option considering multi-shear mechanisms allows for an extension of functionality in material models (such as the Modified Ramberg-Osgood model, Mod ified Hardin-Drnevich model, GHE-S model), where only shear stress is considered. This extension enables the reflection of the rotation of the principal stress ax es in the material model.

Analysis > Analysis Case > General > Analysis Type : Nonlinear Analysis/ Construction Stage Analysis / Nonlinear Time History Analysis / Nonlinear Time History Analysis + SRM > Analysis Control

[Relative Displacement Multiple S hear Mechanism (n=0)]

[Relative Displacement Multiple S hear Mechanism (n=2)]

[Vertical Displacement History]

[Horizontal displacement history]

1.3 Fluid Element (Sloshing)

A fluid element that simulates water in structures and liquid gas in LNG has been added. It calculates wave height and pressure during earthquakes, predicting t ank stake proximity and pressure. This Sloshing Medium also models reservoir sloshing conditions during earthquakes, serving as an alternative to Westergaard' ^s Added Mass.

MIDAS

1.3 Fluid Element (Sloshing)

A fluid element that simulates water in structures and liquid gas in LNG has been added. It calculates wave height and pressure during earthquakes, predicting t ank stake proximity and pressure. This Sloshing Medium also models reservoir sloshing conditions during earthquakes, serving as an alternative to Westergaard' ^s Added Mass.

1.3 Fluid Element (Sloshing)

A fluid element that simulates water in structures and liquid gas in LNG has been added. It calculates wave height and pressure during earthquakes, predicting t ank stake proximity and pressure. This Sloshing Medium also models reservoir sloshing conditions during earthquakes, serving as an alternative to Westergaard' ^s Added Mass.

Mesh > Prop./CSys./Func. > Material

Velocity Potential Theory

Natural

Cycle
$$
T_{si} = \frac{2\pi}{\omega_i} = 2\pi \sqrt{\frac{R}{\varepsilon_i g}} \coth\left(\varepsilon_i \frac{H}{R}\right)
$$

Natural Frequency
$$
f(Hz) = \frac{1}{2\pi} \cdot \sqrt{\frac{(2n-1)\cdot \pi \cdot g}{L} \cdot \tanh\left(\frac{(2n-1)\cdot \pi \cdot H}{L}\right)}
$$

 \overline{D}

Perform an eigenvalue Analysis including liquid elements and compare the natural frequency and natural period as follows.

ε i is the i th root of dJ1(r)/dr=0 α and is calculate as ε 1=1.84118.

1.4 SRM Inclusion Elements

By default, the strength reduction method (SRM) assesses the entire model's stability, identifying vulnerable sections globally. For specific area analysis (Local St ability), SRM Inclusion Zones can be used. For example, in dam models, you can analyze each side independently. (※ Applicable only in Construction Stage Anal ysis.)

1.4 SRM Inclusion Elements

Another Application, in the case of an Open Pit Mine Models, you can independently analyze the stability of each 'Cut' of the Open Pit Mine Model.

1.5 Newmark- β Method

Until the previous version, the HHT- α method was the default numerical integration scheme. The new version adds the Newmark- β method, allowing users to choose between Newmark-β and HHT-α for analysis. Newmark-β offers three input methods, with Constant Acceleration recommended for stability. HHT-α, a generalized form of Newmark, has a default α H value of -0.05 in GTSNX.

Analysis Case > Analysis Control

Newmark Method: In the direct integration method, the Newmark method is used for numerical integrati on of the equations of motion, and two parameters related to this, Gamma and Beta, are input.

Constant Acceleration Method:

This method assumes that the acceleration of the structure remains constant over each time step interval, automatically inputting Gamma (=1/2) and Beta (=1/4). According to this assumption, in the analysis base d on direct integration, the interpretation results can prevent divergence regardless of the value of the tim e increment.

Linear Acceleration Method:

This method assumes that the acceleration of the structure changes linearly over each time step interval, a utomatically inputting Gamma (=1/2) and Beta (=1/6). According to this assumption, in the analysis base d on direct integration, if the time increment is more than 0.551 times the shortest period contained in th e structure, the interpretation results may diverge.

Users input the values of Gamma and Beta directly.

Displacement/Velocity/Acceleration Damping Coefficient: In co-analysis, to prevent deterioration of convergence due to abrupt changes, the curve i nputted in the solver is smoothed for use. Entering '0' means no smoothing is applied.

※ Control of the Newmark method according to the time integration method cannot be done on a stage-by-stage basis in the construction stage a nalysis, so it has been added as a global setting. Consequently, even in general step-by-step analyses, the dynamic analysis tab is displayed, but the c ontrol values in this dynamic analysis tab are only reflected in the analysis when performing stress-nonlinear time history analysis.

User Input:

1.6 Rayleigh Damping by Element(Material)

During seismic analysis, the superstructure, substructure, and ground all have different attenuation coefficients Therefore, in the analysis, a function is installed to calculate the attenuation coefficients α and β for each material.

Analysis > Analysis Control > Dynamic > Damping Method

In the previous version, the α and β of all the materials are calculated using the inputted frequencies of the model. In the new version, user has an option to input frequencies of each material and calculate α and β separately.

1.6 Rayleigh Damping by Element(Material)

During seismic analysis, the superstructure, substructure, and ground all have different attenuation coefficients Therefore, in the analysis, a function is installed to calculate the attenuation coefficients α and β for each material.

1.7 Coupled Stress, Seepage and Nonlinear Time History Analysis

In the new version, user can couple Stress, Seepage, Slope and Nonlinear Time History Analysis. For Example, in case of earthen dam, one can consider the effects of construction sequence, seepage, and earthquake for the assessment in a single analysis.

Static/Slope Analysis > Construction Stage > Stage Set > Stress-Seepage-Slope-Nonlinear Time History

1.8 Saturated and Unsaturated Soil Properties

The strength parameters such as C & phi varies in both saturated and unsaturated conditions for a material. In the new version, the user can define two differen t properties of the same material in both Unsaturated and Saturated Conditions.

And software automatically takes the respective properties of the material depending on the pore pressure developed when 'Auto Change Property By Pore Pr essure' boundary condition is defined.

Mesh > Element > Parameters > 2D/3D > Auto Change Property by Pore Pressure

2.1 Material Evaluator (GHE-S Model)

The Japanese railway dynamic nonlinear material model employs the GHE (General Hyperbolic Equation) proposed by Tatsuoka and Shibuya for the skeleton cu rve and hysteresis law improves upon the Massing law for the stress-strain relationship to satisfy / ∼ and ∼ relationships. When $\gamma \sim$ and \sim relationship experimental data are entered, the parameters required for the material definition are automatically calculated.

Dynamic Analysis > Tools > Material Evaluation > GHE-S Model

※ In the definition of the existing GHE-S mo del, the nonlinear tab's sub-material evaluati on function has been moved to the tool position .

Type:

Choose whether to estimate parameters fro m the raw experimental data ∕〖 _ ~ 〗 or from the normalized da ta.

Error Norm for Fit:

These are the criteria used to evaluate errors when estimating data.

Relative Error:

e

(True Value - Approximate Value) / True Valu

2.1 Material Evaluator (Bowl Model)

The model proposed by Fukutake & Matsuoka for modeling dilatancy due to multi-directional simple shear is applied to the Modified Ramberg-Osgood model t o account for liquefaction caused by seismic loading. When experimental values and estimated values are input, the parameters necessary for material definitio n are automatically calculated.

[Bowl Model Material Evaluation]

[Bowl Parameter s]

2.1 Material Evaluator (RO/HD Model)

In the hysteretic material model, when experimental data of G/G0∼ γ and $h \sim$ relationships are input, the parameters necessary for defining the material. R eference strain for Hardin-Drnevich (HD), and reference strain and maximum damping ratio for Ramberg-Osgood (HD) are automatically calculated.

2.2 Skin Friction vs Depth in Pile Interface

Now, defining Skin Friction vs. Depth for the Pile Interface is simpler. Users can directly input the global pile depth and corresponding ultimate shear force (skin friction). Previously, individual pile interfaces for each layer were required. This update offers three methods for defining the Pile Interface: 1. Direct definition of Skin Friction and stiffness for the entire pile. 2. Skin Friction vs. Depth & Shear Stiffness vs. Depth. 3. Direct P-y Curve definition vs. Depth.

Mesh > Prop./Csys./Func. > Material > Interface and Pile > Pile

Shear Resistance:

Select the methods, 'Value' or 'Function'

Value:

In this method, we need to define 'Ultimate Shear Force vs Height' and 'Shear Stiffness Modulus vs Height'

Height :

The Global Depth in the model is to be entered in the Height Column

2.3 Plastic Status Contour Improvement

In the Hardening Soil and Modified Mohr Coulomb material models, a new feature now distinguishes and outputs regions of plastic deformation or failure as Pl astic Hardening and Cap+Hardening areas post-analysis. Furthermore, users can easily identify these areas by toggling the marking feature on or off through th e properties window.

Results Works Tree >Plane Strain Stresses/Solid Stresses > Plastic Status

Properties Works Tree > Status Results

2.4 Tunnel Lining Plots

Tunnel designers commonly use the Carranza-Torres and Diederichs (2009) method to check the capacity of composite linings (steel sets embedded in shotcret e). This method calculates Equivalent Section properties and draws Demand-Capacity plots (M-N & Q-N) separately for Steel Sets/Ribs/Lattice Girders and Shotc rete, based on analysis results of Bending Moment (M), Shear Force (Q), and Axial/Hoop Force (N).

2.5 Geometry and Mesh Connection (Geo-Relation)

In earlier versions, moving or deleting geometric shapes before extracting sub-shapes from the meshed geometry could disrupt the geometry-mesh connection, necessitating mesh regeneration. However, in GTS NX 2024v1.1, users can automatically reconnect using manual editing or tolerance ranges. This enhancemen t streamlines tasks like load assignment and element extraction.

Mesh > Tools > Geo-Relation

2.6 Random Setting of Dynamic Analysis Output Time

Previously, when defining time steps, results were only output at the times set for intermediate results. However, a new feature has been added to allow results to be output at specific times. For example, if the time interval is set to 0.01 seconds and the intermediate results output is set to 100, results are output every 1 second. Now, by entering the desired specific times for result output, additional result items can also be output at those specified times.

2.7 Dynamic Analysis Min/Max value occurrence time output

Now the users can be able to find the Time of Occurrence of the Min/Max/Abs Max results at each node.

Results Tree > MIN, MAX, ABSOLUTE MAX (Occurrence time output)

2.8 Improve Dynamic Analysis ABSOLUTE MAX(Absolute value output)

Previously, the ABSOLUTE MAX results displayed the actual values after considering the signs, based on absolute value comparisons across the entire time perio d. However, we have now changed it to display the absolute values directly, to facilitate consistent variability analysis when reviewing ABSOLUTE MAX results.

Results Tree > ABSOLUTE MAX

[Positive/Negative Result \rightarrow Change Output format(AB

2.9 Customization of Results Display

Previously, loading results in dynamic analysis or construction stage analysis could be time-consuming, especially with numerous time steps or stages. In the ne w version, users can select specific parts of the output results to display, ensuring faster output speed in models with many large steps and stages, like nonlinea r time history analysis or construction stage analysis.

Results Tree > Analysis Case > Analysis

[Select the Steps to be seen using 'Interv al']

[Select the Results to be shown in Resp ective Steps]

GTSNX 2024(v1.1) Analysis Enhancement CHSN 2024(v1.1) Release Note

2.10 Body Force

A new load set is introduced to assign the accelerations (pseudo static loads) for respective Elements/Mesh Sets.

In the case of Pseudo Static Loads, user needs to input the Accelerations directly (seismic coefficients*acceleration due to gravity) in the body force definition.

2.11 HD/RO/GHE-S Function (Confining Pressure)

An input item has been added to allow input of the standard confining pressure. Under the standard confining pressure used in the 3-axis compression experim ent

You can directly enter shear stiffness and reference strain rate or by using the Material Evaluator.

Mesh > Material > Isotropic > Modified Ramberg-Osgood > Nonlinear

2.12 Accessing the Load Combination & Convert to Loadsets

Previously, it was tough to access the generated Load Combination. Now the user can access the generated load combination and corresponding load factors u sed.

In addition, you can convert the Load Combination into a Load Sets

Analysis Workstree > Combined Loadsets

2.13 Construction Stage Wizard Function Improvement

Previously, the construction stage wizard was limited to single-type analysis. Now, it supports configuring stages for coupled Seepage-Stress unidirectional anal yses. Sequential definition is possible for infiltration and stress stages; other cases require separate modifications in the construction stage set.

2.14 Additional Construction Stage Type

Previously, the construction stage for semi-coupled analysis considering seepage and stress required defining the seepage and stress stages separately. However, a new functionality has been added that allows the construction stages to be easily configured using the 'stress seepage' stage type, which defines both seepag e and stress stages in the same window.

Static/Slope/Seepage/Consolidation Analysis > Construction Stage > Stage Set > Stage Type [Stress-Seepage-Slope] > Stage Type [Stress Seepage]

2.15 Initial Equilibrium Force and Initial Stress Table Functions

Now, initial equilibrium forces for different elements (truss/embedded truss, beam/embedded beam, plane strain/plane stress, axisymmetric, solid, shell) can be automatically generated from analyzed results. Previously, users manually input these forces, but now they're generated from analysis results. Moreover, static a nalysis results (stress, internal forces) can be set as initial conditions for dynamic analysis, facilitating dynamic analysis based on these initial conditions.

2.15 Initial Equilibrium Force and Initial Stress Table Functions

Now, initial equilibrium forces for different elements (truss/embedded truss, beam/embedded beam, plane strain/plane stress, axisymmetric, solid, shell) can be automatically generated from analyzed results. Previously, users manually input these forces, but now they're generated from analysis results. Moreover, static a nalysis results (stress, internal forces) can be set as initial conditions for dynamic analysis, facilitating dynamic analysis based on these initial conditions.

Static Analysis > Static Load > Initial Equilibrium Force

[Initial Equilibrium Force of Beam Element]

[Initial Stress of Plane Strain/Plane Stress Element]

2.16 Multiple Copy Objects Relative to Base Point

User can now be able to copy the Geometry Multiple times to different locations using the 'Multiple Points Copy' option.

2.17 Hinge (M-Φ Data) Assign Table

When assigning inelastic hinge properties (M- ϕ) to structural elements, it was previously necessary to repetitively set these properties for each element when d ealing with many structural members. This process has been improved with a new feature that allows users to easily assign hinge properties through a table. Ad ditionally, a feature has been added to facilitate the import and export of hinge property files from a CSV file when defining hinge properties.

Mesh > Element > Hinge Table Mesh > Prop./Csys./Func. > Hinge > Hinge Properties

2.18 Midas Civil Inelastic Hinge Data

Previously, the inelastic hinge data assigned to elements in Midas Civil could not be imported into GTS NX via the .mxt format. Now, the user can import the ine lastic hinge data into GTS NX using mxt format and proceed with nonlinear analysis involving soil continuum and structural elements.

File > Import > midas Mxt

2.19 Analysis Log Visualization

In this version, user can be able to visualize the Work/Load/Displacement Norm vs Iteration graphically to better understand the convergence and divergence in the solution during the analysis.

2.20 Nastran file Export

In the new version, a function has been added to export the GTS NX Model into a Nastran Input File.

File > Export > Export Nastran Input File

2.21 Default Self-Weight

When creating a new model, the system has been updated to automatically register self-weight according to the analysis settings (2D/3D).

Analysis Works Tree > Static Load > Default Self Weight

2.22 High Resolution Support

The previously optimized GUI for FHD (1920x1080 pixels) has been enhanced to support 4K (3840x2160 pixels) resolution. The interface, function icons, and te xt now scale according to the Windows user scaling settings.

Thank you for being a part of our journey. Let's achieve more together!