

Release Note

Release Date : Oct. 07, 2021

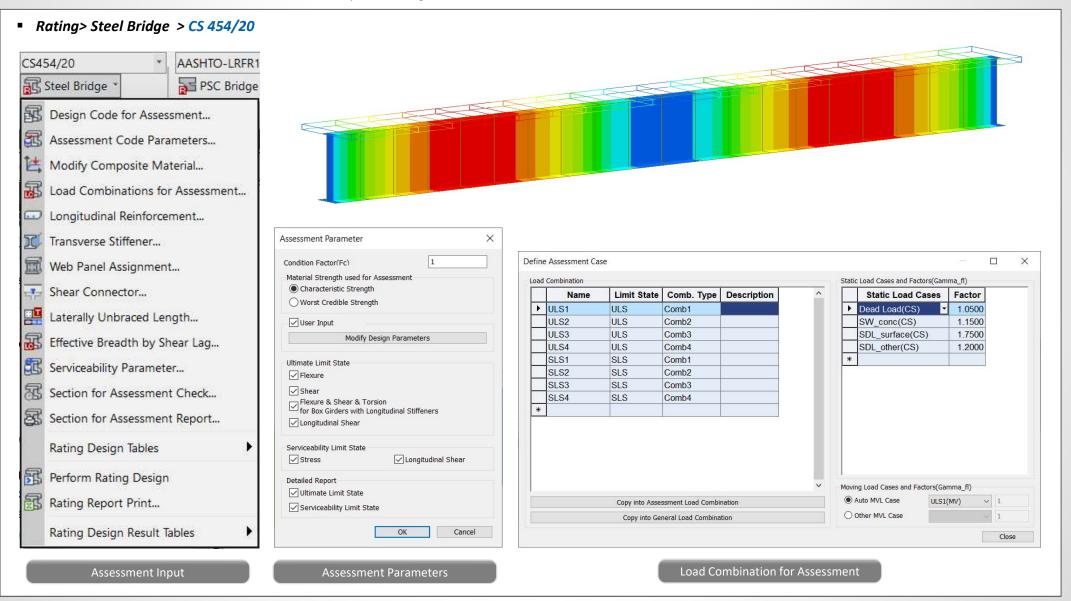
Product Ver. : Civil 2022 (v1.1)

DESIGN OF CIVIL STRUCTURES

ntegrated Solution System for Bridge and givil Engineering

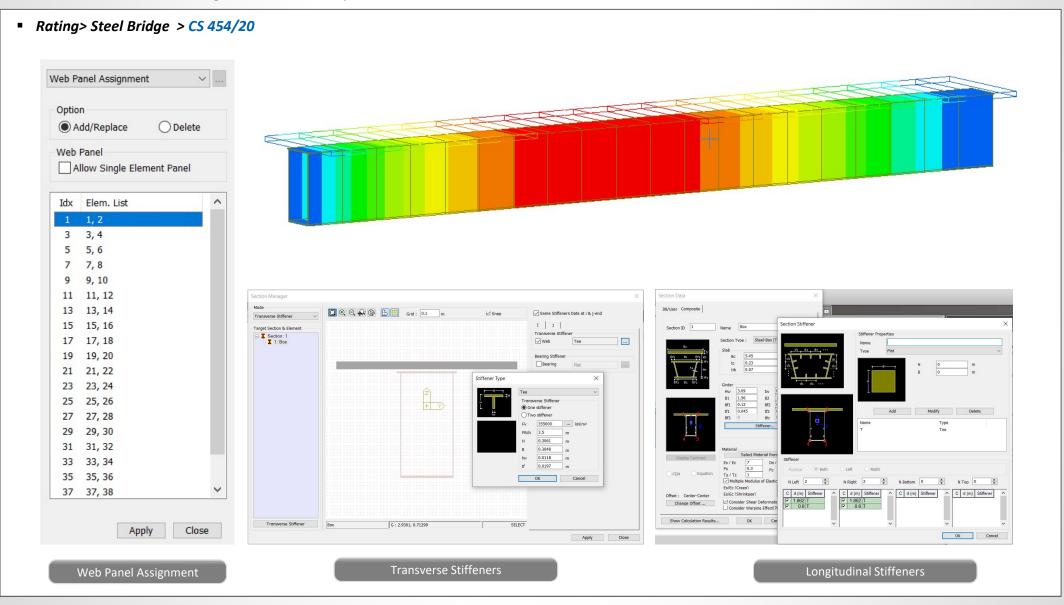
Enhancements

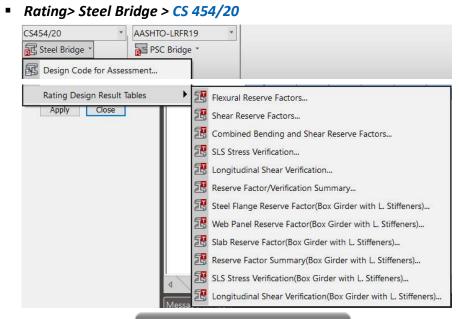
- 1. UK CS 454 Bridge Assessment for Steel Composite Girder
- 2. UK High-Speed Train Loads Database for Train Load Generator
- 3. Train Load Generator Time Forcing Function Improvement
- 4. AS 5100.5:17 Update for midas GSD
- 5. Italy NTC 2018 RS function
- 6. Auto-generation of Beam Section Temperature Loads (AASHTO, Eurocode, Australia)
- 7. Load Rating LRFR 2019 Update to AASHTO MBE 3rd edition
- 8. Traffic Load AK, N11 Update to Russia Standard
- 9. Longitudinal Stiffener Input Measured from Bottom of Steel Composite Girder


1. UK CS 454 Bridge Assessment for Steel Composite Girder

Steel composite girder assessment to CS 454 and CS 457 has been added.

1. UK CS 454 Bridge Assessment for Steel Composite Girder


- Level 1 assessment can be performed now for the steel composite girders in midas Civil.
- Assessment load combinations can be defined to obtain output for strength & service limit states.


1. UK CS 454 Bridge Assessment for Steel Composite Girder

- · Assessment can be performed depending on section types such as plate girders and box girders. (Note: Box girder assessment will not be included in this release.)
- Stiffeners in the transverse and longitudinal direction, web panels, shear connectors can be defined.

1. UK CS 454 Bridge Assessment for Steel Composite Girder

- Assessment results can be viewed in tabular format in midas Civil itself and these can be exported to excel file as well.
- Both summary ands detailed report are provided for the bending, shear, combined bending and shear, longitudinal shear checks and service limit state.

Assessment Result Tables

	Element	Part		F	Ratin	ng Case		Comp./ Tens.	Sig_y (N/mn		Sig_f_SV (N/mm²)		V Sig_f_D 1 ²) (N/mm ²		Sig_f_S (N/mm ²			Ps		Psi*	Che	ck	
•	10	I[10]	UL	.S1	Fxx	(Max)		74 74	- 0.00	00	0.0000	20781	05 0.000	0.000	0.000	0.000	0.00	00	-		- NG		
	10	I[10]	UL	S1	Fyy	(Max)			- 7.63	13	0.0000	0.00	6.592	9 0.000	0.000	0.000	00	- 1000	000	10000	00 OK		
	10	I[10]	UL	S1	Fyy	(Min)			- 7.63	13	0.0000	0.00	00 6.592	9 0.000	0.000	0.000	00	- 1000	000	10000	00 OK		
	10	I[10]	UL	S1	Fzz	(Max)			- 7.63	13	-28.5044	0.00	00 -23.639	2 0.0000	4.781	3 0.000	00	- 1000	000	10000	00 OK		
	10	I[10]	UL	S1	-	78.4° 5		1	7.00	40	00 7004	0.00	00.000				1	4000	000	10000			T
	10	I[10]	UL	S'		Element	Pa	rt Sectio	n Type		Rating Cas	e	Load Effect	RA* (kN⋅m)	S* (kN⋅m)	SD* (kN⋅m)	SST* (kN·m)	SA* (kN·m)	1	A	Psi	Psi*	Chec
	10	I[10]	UL	S'							100				1	1 A							
	10	I[10]	UL	S'	•] Comp			_Fxx(Max)		Negative	7713.604	0.0000	-393.340	0.0000	-393.340			1000000	1000000	-
		I[10]	UL] Comp			_Fxx(Min)		Negative	7713.604	0.0000	-393.340	0.0000	-393.340			1000000	1000000	
	10	I[10]	UL	S'] Comp			_Fyy(Max)		Negative	7713.604	0.0000	-393.340	0.0000	-393.340			1000000	1000000	
_	10	I[10]	UL	S'-				Comp Comp			_Fyy(Min)		Negative	7713.604	0.0000	-393.340 -393.340	0.0000	-393.340 -3148.27		6105 1 4501	1000000	1000000	OK
				H	_		J[11	Comp Comp			_Fzz(Max) Fzz(Min)		Negative Negative	7713.604	0.0000	-393.340	0.0000	-3140.27			1000000	1000000	-
				H	_			1 Comp			Mxx(Max		Negative	7713.604	-1279.73	-393.340	-1664.86	-2058.20		7477	1000000		OK
				H				Comp			Mxx(Min)		Negative	7713.604	-1279.73	-393.340	-1664.86	-2058.20		7477			OK
				h				1 Comp			Myy(Max		Negative	7713.604	0.0000	-393,340	0.0000	-393.340			1000000	1000000	
				h				1 Comp			Myy(Min)		Negative	7640.440	-2449.06	-393.340	-2998.06	-3391.40		2529	-	-	OK
				h		10	J[11] Comp	act U	LS1	Mzz(Max)	Negative	7713.604	0.0000	-393.340	0.0000	-393.340	19.	6105 1	1000000	1000000	OK
						10	J[11	1 Comp	act U	LS1	Mzz(Min)		Negative	7713.604	0.0000	-393.340	0.0000	-393.340	19.	6105 1	1000000	1000000	OK

Tabular Output in midas Civil

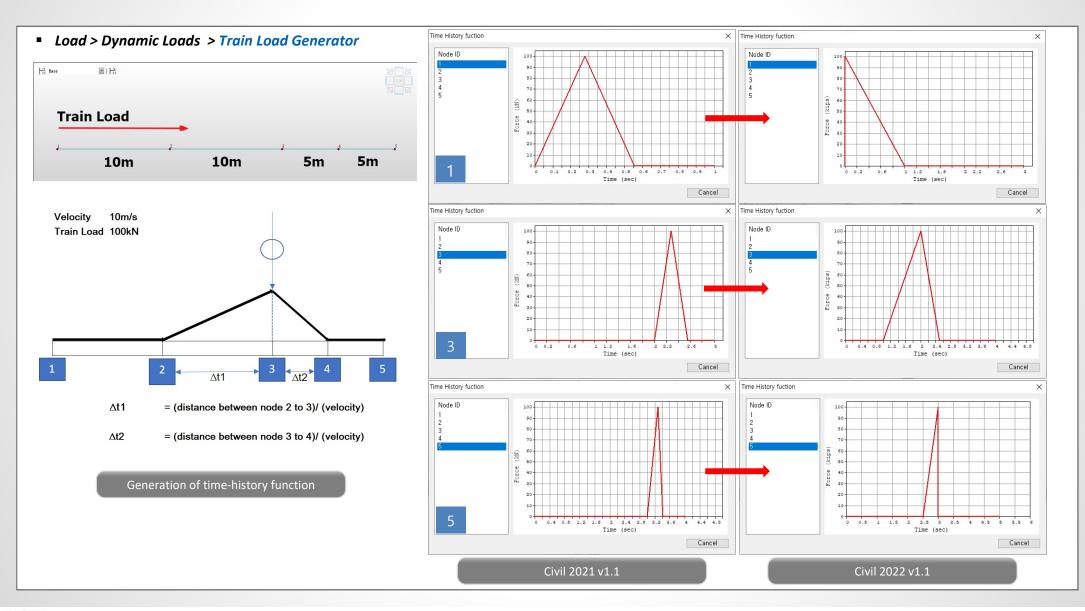
Desig	gn (Condit	ion																			
[Desi	gn code		Elemen	t Par	t(Node)																
	CS4	154/20		8		I(8)																
Asse	ssm	ent fa	ctors																			
The f	ollo	wing f	actors,	as in C	s 454,	have be	een use	d to d	ompa	re re	sults	of di	ffere	nt								
confi	gur	ations	and co	mbina	tions.			.1 .1		1		TT				-						
- A	dec	uacy fa	ctor:			3.	Flexur		serve	-					-				_			
				م *			t	nen	Load		₹ _a *	S*		S _D *		S _{ST} *	S _a *		A	Ψ	ψ*	Chec
			$A = \frac{1}{2}$	$\frac{R_a}{C^*}$			Case	2	Effect	(kľ	v.m)	(kN.r	n) ((kN.m)	(k	(N.m)	(kN.r	m)				
				³ a	0.00		ULS1_Fxx	Max) N	Vegativ	e 781	8.638	0.00	0 -3	393.340	0	0.000	-393.3	40	19.878	-	-	ОК
1							ULS1_Fxx	(Min) N	Vegativ	e 781	8.638	0.00	0 -3	393.340	0	0.000	-393.3	40	19.878	3-3	-	ОК
• S	pec	ial Vehi	cle rese	erve fact	or v 4.	Shear R	eserve	Facto	ors										878	-	-	ОК
		$\Psi = \frac{1}{2}$	$R_{a}^{*} - ($	$S_{D}^{*} + S_{C}^{*}$	(s_T)	Assessm	en Ra		S*	SD	*	S _{ST} *		S _a *		Ψ	W *		878	-	-	ОК
		•		S*		t Case	(kN	1)	(kN)	(kN	V)	(kN)	()	kN)	A	Ψ	Ψ*	Che	ck	-	-	ок
						ULS1_Fxx(M	ax) -		-	-				-	-	-	-	-	578	-	-	ОК
• S	epc	ial Vehi	cle rese	erve fact	orv	ULS1_Fxx(N	lin) 7720.	152 (0.000	201.	277	0.000	201	1.277 3	8.356	-	-	OI				OK
		,	5 Cor	nhined	Bendi	ng and s	Shear P	osory	e Fact	ore												
		2		essmen	Mp	M,	Vp	V,			V			V _{DL}		M	V					
				t	(kN.m)	(kN.m)	(kN)	(kN		M _{sv} N.m)	V _s (kN	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	M _{DL} N.m)	(kN)		M _{st} (kN.m)	V _{S1} (kN		Α	Ψ	Ψ*	Check
Whe	re:			Fxx(Max)		6769.383	7720.152			.000	0.00		2.941			0.000	0.00	_	0.058	-		ОК
R*-		the as		Fxx(Min)		6769.383	7720.152			.000	0.00		2.941			0.000	0.00		0.058	-		OK
Cir								+)	0.00		2.941	-	+	0.000	0.00		0.058	-		OK
5* 5*	-	essmen		ar Verifi				-)	0.00		2.941	NG	-	0.000	0.00		0.058	-		OK
		t	q (kN/m)	P _{im} (kN)	P _a (kN)	q, (kN/m)	q/q,	(q/q _r) _{lin}	_{nit} Cheo	k 69	1371.		2.941	-		2754.934	1795.2		0.465	-		OK
S	_	Case L_Fxx(Max)	0.032	125.000	82.642	0.248	0.065	1.000	NG	5	0.00		2.941			0.000	0.00		0.058	-		ОК
3	ULS	1_Fxx(Min)	-	-	3-3	-	-	-	-	37	402.	45 -32	2.941	NG	1-	1664.865	823.6	72	0.304	-		ОК
	ULS	L_Fyy(Max)	0.032	125.000	82.642	0.248	0.065	1.000	NG	37	402.1	45 -32	2.941	NG	-	1664.865	823.6	72	0.304	-		ОК
	ULS	1_Fyy(Min)	0.032	125.000	82.642	0.248	0.065	1.000	NG	5	0.00	00 -32	2.941	NG	T	0.000	0.00	00	0.058	-		ОК
	ULS	1_Fzz(Max)	0.578	125.000	82.642	0.248	1.166	1.000	NG	66	1174.	535 -32	2.941	NG	-	2998.067	1470.5	545	0.501	-		ОК
		1_Fzz(Min)	0.255	125.000	82.642	0.248	0.513	1.000	NG		0.00	0 -32	2.941	NG	1	0.000	0.00	00	0.058	-		ОК
		_Mox[Max]	0.351	125.000	82.642	0.248	0.708	1.000	NG	······	0.00		2.941			0.000	0.00		0.058	-		OK
-		_Mxx(Min)	0.077	125.000	82.642 82.642	0.248	0.156	1.000	NG						-							
	0151	_Myy(Max) _Myy(Min)	0.077	125.000 125.000	82.642	0.248	0.155	1.000	NG													
	ULS1							1.000														
		_Mzz(Max)	0.032	125.000	82.642	0.248	0.065	1.000	NG													

Excel Report Output

2. UK High-Speed Train Loads Database for Train Load Generator

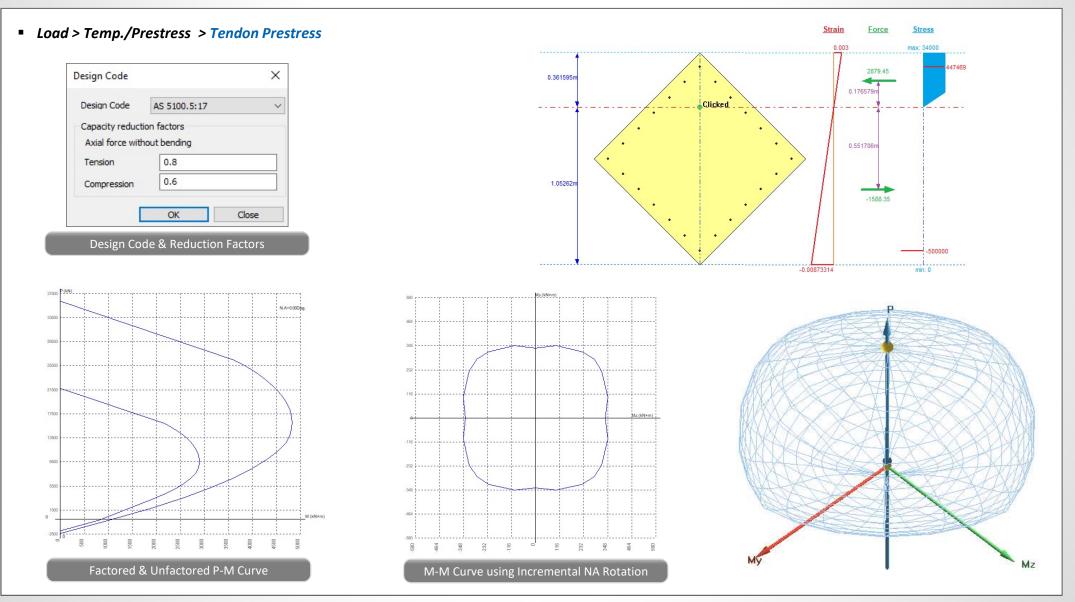
- UK high-speed train loads database are available in the Train Load Generator.
- UK Vehicle data is provided as per the clause of UK HS2.

Load > Dynamic Loads > Time History Analysis Data > Train Load Generator > Vehicle Code - UK


Train Load Generator			×
Define Tracks	No	Length(m)	Force(kN)
		0,000	177,000
0,0,0	m 2	2,800	177,000
100,0,0	m 3	8,200 2,800	177,000
	4	4,500	111,000
Operations	6	13,140	215.000
Add Insert Dele		13,100	209,000
insert Der	8	13,100	216.000
	1.9	13,100	222,000
No Node Distance(n	n) 10	13.100	222.000
1 128	0 11	13,100	214,000
2 129	5 12	13,100	214,000
	5 13	13,100	222,000
3 130		13,100	222,000
4 131	5 15	13,100	222,000
5 132	5 16	13,100	228,000
Dynamic Load Case test	~ 17	13,140	117,000
-	18	4,500	177,000
Name UK	19	2,800	177,000
Vehicle Code UK	20	8,200 2,800	177,000
Vehicle Type Articulated Single		2,000	177,000
Number of Wheels 21			
Train Velocity 200	km/h		
	NIT/TI		
Scaling			-
Scale Factor			
O Max, Value			
Time			
Start Time 0 🔹	sec	Add Modify	Delete Insert
Load Direction -Z	~	Length 0	Force 0
Open Save As Import	. Sho	w Graph	OK Cancel

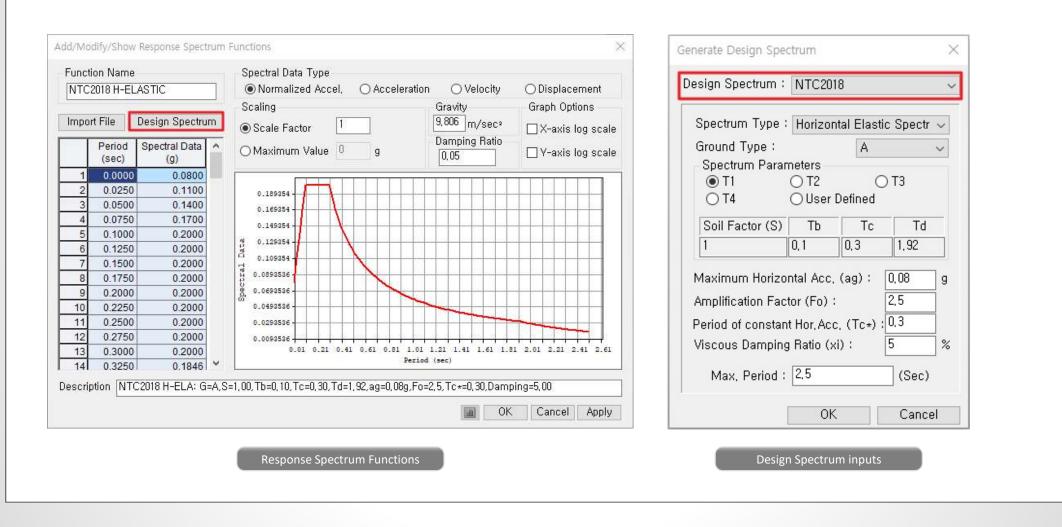
Train Load Generator

Dynamic Load Case	test v	
Name		
Vehicle Code	UK ~	
Vehicle Type	Articulated Single 🗸	
Number of Wheels Train Velocity Scaling Scale Factor [1 O Max, Value [0]	Articulated Single Axle Articulated Double Deck 11 Articulated Double Deck 10 Articulated Distributed Conventional Current Conventional Omni Conventional Future 1 Conventional Future 2 Conventional Segmented 28m	
	Vehicle Code & Type	
the transmit	Dynamic Nodal Loads	


3. Train Load Generator Time Forcing Function Improvement

- Time-history function is improved for the nodes which have different distances between nodes.
- Time-history function is also improved for the first node and the last node of the track.

4. AS 5100.5:17 Update for midas GSD


- Factored & unfactored P-M curve, M-M curve and stress contours based on AS 5100.5:17 can now be generated in midas GSD.
- Accurate M-M curve calculations with incremental NA rotation is adopted as it could be used for any section shape. This is preferred over traditional empirical approach in the code.

5. Response Spectrum Function: Italy NTC 2018

Response spectrum function as per Italy NTC 2018 has been added.

Load > Dynamic Loads > RS Functions

6. Auto-generation of Beam Section Temperature Loads (AASHTO, Eurocode, Australia)

- Auto definition of the temperature gradient for PSC and Steel composite girders as per AASHTO LRFD 2020.
- Applicable for sections defined from PSC, Composite tab (not applicable for SPC and Value type sections).
- Load > Temp/Prestress> Beam Section Temperature > AASHTO LRFD 2020

	e Name	~	
Load Gro	up Name		
Default		~	
Options			
Add	OReplace	ODe	elete
Top ↓ <u><u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u></u>	I	<u><u>H1,</u>T</u>	H2,T2 11 tom

Define Code AASHTO LRFD 2020 V Section Type PSC Temperature Grescel Composite Positive Negative T1 54 [T] T2 14 [T] T3 5 [T] A Auto User 12 in	Depth of super-structure T_1 R_1 T_2 T_2 T_3
	OK Cancel

6. Auto-generation of Beam Section Temperature Loads (AASHTO, Eurocode, Australia)

- Auto definition of the temperature gradient for PSC and Steel composite girders as per Eurocode.
- Applicable for section defined from PSC, Composite tab (not applicable for SPC and Value type sections).

Load > Temp/Prestress> Beam Section Temperature > Eurocode

Load Case Na	me		
		~	
Load Group Na	ame		
Default		~	
Section Type	Replace		
◯ General	PSC/0	Composi	te
Apply by Co	de Provisio	on	
Top ↓ <u><u><u></u><u></u><u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u></u></u>		HITI	⊒ 12,T2

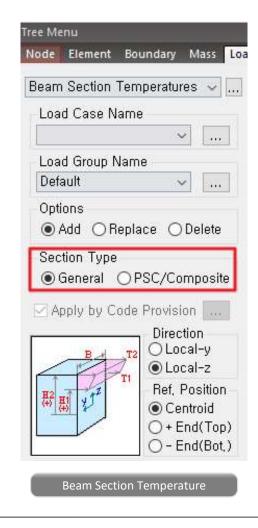
Depth of super- h h_2 ΔT_2
h_3 ΔT_3
$\begin{array}{rcl} h_1 &=& 0.3h & but &\leq 0.15m \\ h_2 &=& 0.3h & but &\geq 0.10m \end{array}$
$h_3 = 0.3h$ but $\leq 0.25m$ $h_3 = 0.3h$ but $\geq 0.10m + 10m$
surfacing depth in metres) (for thin slabs, h_3 is limited by $h - h_1 - h_2$)
h ΔT_1 ΔT_2 ΔT_3
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

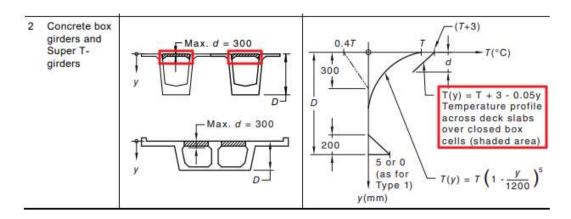
Auto Option as per Code Provision

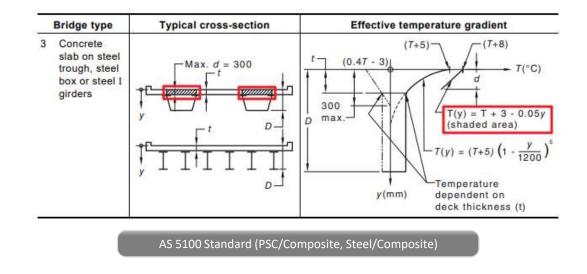
6. Auto-generation of Beam Section Temperature Loads (AASHTO, Eurocode, Australia)

- Auto definition of the temperature gradient for PSC and Steel composite girders as per AS 5100.
- Applicable for section defined from PSC, Composite tab (not applicable for SPC and Value type sections).

Load > Temp/Prestress> Beam Section Temperature > AS 5100

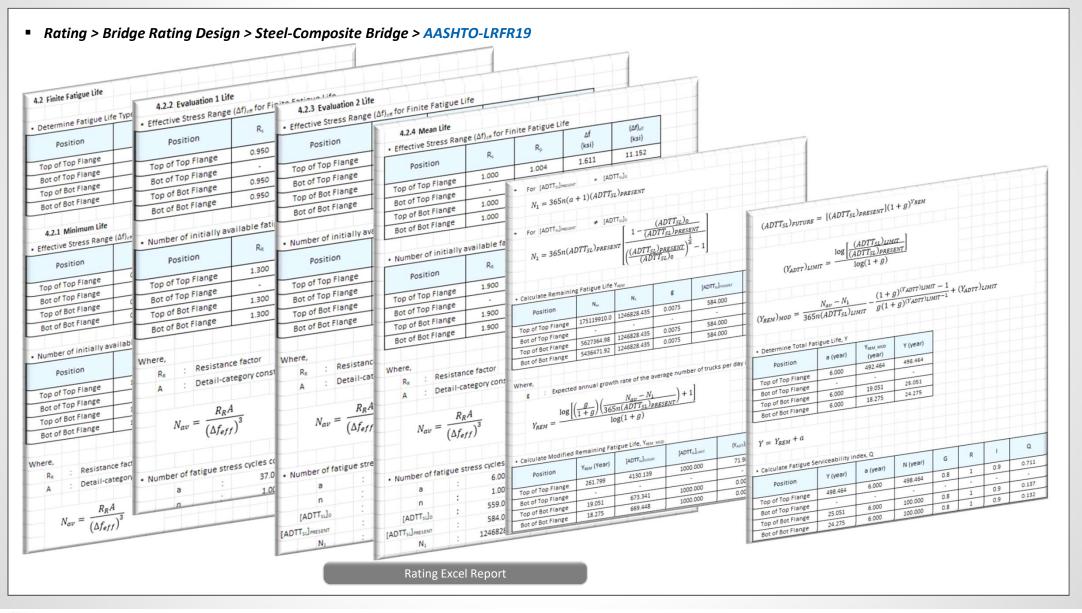

	ame	~		
Load Group N	Vame			
Default		~		
Options				
● Add ○	Replace	ODe	lete	
Apply by C				
Тор				
+ H1,T1 H2,T2			-	
-	-	H1,T1	12,T2	
t		Bott	om	


Temperature G	○ Negative	Deck concrete surface $0.4T$ T T $T(^{\circ}C)$ D $T(y) = T \left(1 - \frac{y}{1200}\right)^{5}$
		Soffit y (mm) Soffit within 8m of ground 0 - over water


Auto Option as per Code Provision

6. Auto-generation of Beam Section Temperature Loads (AASHTO, Eurocode, Australia)

- The AS 5100 standard has different temperature distributions between the shaded area and other area of the top slab of the PSC sections, but in this function, the temperature distribution of other area is applied to the whole area of the top slab.
- It is recommended to use the General Section Type in Beam Section Temperatures to apply the temperature distribution of the shaded area.
- Load > Temp/Prestress > Beam Section Temperature > General Type


7. Load Rating LRFR 2019 Update to AASHTO MBE 3rd edition - Steel Composite Girder

- Service, Strength & Fatigue rating are available for steel composite girder based on AASHTO-LRFR19.
- Finite/Infinite life as well as serviceability index could be viewed in the software and the excel report could be referred to for detailed calculations.

			Steel Bridge Load Rating Parameters X System factor 1 Update by Code	Tree Menu	Fatigue Parameter V
eel Bridge Load Rating Paramet	ers	×	Strength Limit State	Gen Steel Con SRC PSC CPG	Option
		1	Strength Resistance Factor		Add/Replace O Delete
System factor I Strength Limit State		Update by Code	Resistance factor for yielding (Phi_y) 0.95	Fatigue Parameter v	Gran, apare Oberen
Strength Limit State			Resistance factor for fracture(Phi_u) 0.8	Fatigue Parameter 🗸	Bally and anote (& 3) have the same
Resistance factor for yielding ((Phi v)	0.95	Resistance factor for axial comp. (Phi_c) 0.9 Resistance factor for flexure (Phi_f) 1		Both end parts(i & j) have the same
Resistance factor for fracture(0.8		Option	type
Resistance factor for axial com		0.9		Option Option	IJ
Resistance factor for flexure (F	Phi_f)	1	Resistance factor for shear connector(Phi_se) 0.85 Resistance factor for bearing(Phi_b) 1	Add/Replace O Delete	
Resistance factor for shear (Phi		1			Num.of Lanes, nL 0
Resistance factor for shear cor	nnector(Phi_se)	0.85	Girder Type for Box/Tub Section	Both end parts(i & j) have the same	
Resistance factor for bearing(P	Phi_b)	1	○ Single Box Sections	Both end parts(i & j) have the same type	vie rijresene
Girder Type for Box/Tub Section	1		Consider St. Venant Torsion and Distortion Stresses		(ADTTSL)Present 0
O Single Box Sections	 Multiple Box Section 	ns	Option For Strength Limit State Appendix A6 for Negative Flexure Resistance in Web Compact	IJ	n(cycles) 0
Consider St. Venant Torsion			/ NonCompact Sections		n(cycles) 0
Option For Strength Limit State			✓ Mn<=1.3RhMy in Positive Flexure and Compact Sections(6.10.7.1.2-3)	Category A 🗸 🗸	Check Position Category
Appendix A6 for Negative Fl		npact	Post-buckling Tension-field Action for Shear Resistance(6.10.9.3.2)		checkrosition
/ NonCompact Sections				(ADTT)SL 0	🗹 Top of Top Flange 🛛 A 🗸 🗸
Mn<=1.3RhMy in Positive Fl			☑ Service Limit State	n(cycles) 0	Bot. of Top Flange 🗛 🗸
Post-buckling Tension-field A	Action for Shear Resistance(6	.10.9.3.2)	Auto-Calculation Ouser Input		
Service Limit State			Design Load	Warping Stress Range	🗹 Top of Bot. Flange 🛛 🗛 🗸 🗸
Limiting Stresses in Structural St			Compressive Stress 0 kN/m^2	Auto Calculation	Bot. of Bot. Flange
Auto-Calculation	O User Input		Tensile Stress 0 kW/m^2	O User Input	
Design Load	0	1211122	Legal Load / Permit Load	O User Input	Marries Share Dance
Compressive Stress		kN/m^2	Compressive Stress 0 kN/m^2	Top Flange	Warping Stress Range
Tensile Stress	0	kN/m^2	Tensile Stress 0 kN/m^2		Auto Calculation
Legal Load / Permit Load				0 kN/m^2	O User Input
Compressive Stress		kN/m^2	Fatigue Limit State	Bot, Flange	
Tensile Stress	0	kN/m^2			Top of Top Flange
			Only infinite fatigue life	0 kN/m^2	0 kN/m^2
Fatique Limit State			Finite Fatigue Life Parameter		PUL LE PLO PLOT
Application of Diagnostic Test Res	sult		Current Age of the Detail, a 6 Year		Bot, of Top Flange
Load Test Measurement	🔘 Strain	Oisplacement	Expected Annual Growth Rate of ADTT_SL, g 0.0075		0 kN/m^2
	-	OK Count	Average Number of Truck per Day in a Single Lane	Apply Close	
	, 	OK Cancel	(ADTT_SL)limit 1000 (ADTT_SL)0 559	Close Close	Top of Bot. Flange
					0 kN/m^2
ad Rating Param	notore <u>Provi</u>	our Vorcione	Fatigue Serviceability Index	Fatigue Parameters – Previous Versions	
au Kaling Paran	ieters – Previ	ous versions	Load Path Factor, G 💿 0.80 🔿 0.90 🔿 1.00	Faligue Parameters – Previous versions	Bot, of Bot, Flange
			Redundancy Factor, R O 0.90 💿 1.00		0 kN/m^2
			Important Factor, I 💿 0.90 🔿 0.95 🔿 1.00		0 kN/m^2
			Application of Diagnostic Test Result		
			Load Test Measurement O Strain O Strain		Apply Close
					Apply Close
			OK Cancel		

7. Load Rating LRFR 2019 Update to AASHTO MBE 3rd edition - Steel Composite Girder

- In earlier versions, just the classification whether the detail had infinite fatigue life or finite fatigue life was available.
- In Civil 2022, if the detail has finite fatigue life, then the minimum, evaluation I, evaluation II & mean fatigue life along with serviceability index are provided with detailed calculations.

7. Load Rating LRFR 2019 Update to AASHTO MBE 3rd edition - PSC Girder

- PSC/PSC Composite girders could now be rated based on AASHTO-LRFR19.
- In earlier versions, legal & permit load rating were combined. In newer version, these have been separated and stress ratio for reinforcement/tendon is now calculated for permit load rating.
- Tendon Primary load case should not be selected for the load combinations. It is automatically taken into account by the program.

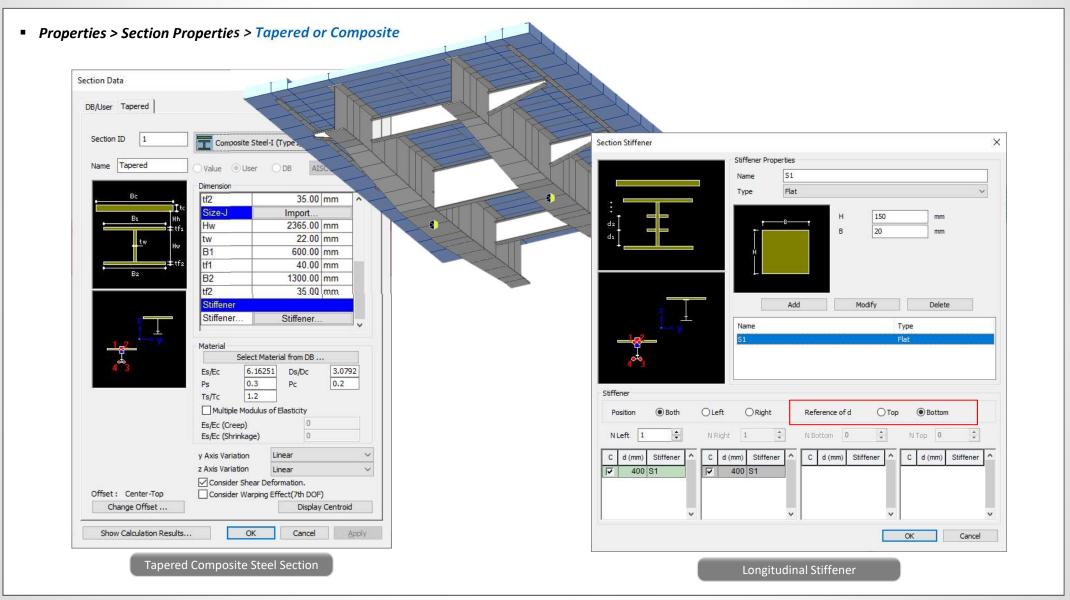
Define Rating Case X	Define Rating Case X	3.2 Legal Load Rating 1) Rating Factor			Live Load	Rating	Factor		
Static Load Combination	Static Load Combination		(keil)	Dead Load Demand (ksi)	Demand (ksi)	35.4	27		
Service Limit State O Strength Limit State		Icom / Tens.	Capacity (ksi)	4.144	-0.564	0.55	52		111
	Service Limit State Strength Limit State	Lcom / Tens.	24.132	4.144	1.862				
Load Type max min Load Cases	Load Type max min Load Cases	Legal Tens.	5.171						
DC 1.00 1.00 *	DC 1.00 1.00 DW 1.00 1.00	Legal		3.3 Permit Load R	ating				
Temperature 1.00	DW 1.00 1.00 *		Lload Demand	3.3 Permit Con Stress Ratio (0	Silvery				
T. Gradient 1.00	T. Gradient 1.00	Where, Capacity - De	Demand			FX-MIN		Applied Stress	Stress R
Secondary 1.00	Secondary 1.00	R.F = Live Load	Dellie	Concurrent force	ein	Rebar Al	llowable Stress	(ks1)	2.61
Permanent 1.00 User Defined 1.00	Permanent 1.00 User Defined 1.00	Str	ain		cracked	Tendon	(ksi) 1378.952	527.412	2,02
*	*	Measure Type : St. Comp.	$\varepsilon_c / \Delta_c(in) = \varepsilon_t$	Lcom /	Uncracked / Cracked	Tendon	1378.952		
		Lcom / Tens.		Permit	Cracked				
		Comp.	0.000E+00 1 0.000E+00 1						
· · · · · · · · · · · · · · · · · · ·		Legal Tens.	0.0002.00	Where,	Allowable Stress	2			
Live Load Combination	Live Load Combination			Stress Ratio =	Applied Stress		mont		
Live Load Factors for Rating	Live Load Factors for Rating	in which :	ated strain (displ	Calculate mome	ants in excess of	f cracking m	kip-ft	: Cracked	
Primary Vehicle Case(MV) v 1	Primary Vehide MVL 1(MV) v 1	$\varepsilon_{c}(\Delta_{c})$: maximum conce		Calculate mom		f cracking m -381420.87			
Adjacent Vehicle Case(MV) V 1		$K = 1 + K_0 \times K_0$		Moead + IVILIVE			kip-ft		
	Adjacent Vehicle MVL 1(MV) V 0	$K_s = \frac{\varepsilon_o}{\varepsilon_s} - 1$		Wherey	$M_{\text{Dead}} = -0$ $M_{\text{Uve}} = -0$	0.022951786	5 kip-ft		
Evaluation Live Load Model	Evaluation Live Load Model				$M_{\text{Dead}} = -0$ $M_{\text{Live}} = 4$	3094785195	S KIP		
Design Live Load O Legal Load / Permit Load	Design Live Load Cegal Load Permit Load		1						
				Section Propert	ties for the crack	ed section	15.53045483	in ³	
Name of Rating Case	Name of Rating Case Design		-	Section Propert	pth, c	=	15.53045405 572170.8574		
Description	Description			Neutral axis de Second momen	t of inertia, ici		don		
Name Limit State Description				Applied stress i	the reinforcer	nenter	00111		
	Name Limit State Description			Applied stress		936.250	2549 ksi		
Add	Design Service Add			- Tendon Effective pr	restress =		0901 5		
Modify	Permit Service Modify			aunace due	to Minear				
				Stress due t	to Milive =	-204.419	0740	alose to 0.0	
Delete	C Delete			Stress due Total stress		that live loa	d demand valu	e is close to	
				where "-" in r	esult table means				
Close	Close			• Where					

8. Traffic Load AK, N11 Update to Russia Standard

• The reliability factor for the UDL of AK vehicle load has changed from 1.15 to 1.25 to the latest amendments to SP 35.13330.2011.

Load > Moving Load > Vehicle

tandard Name	Dynamic Factor			
Russia - Road Bridge and Railway Bridge 🛛 🗸 🗸	O Auto Calculation	- SNIP		
ehicular Load Properties	Material Type RC			
/ehicular Load Name : AK	Bridge Type	Road and Town Bridge		
Vehicular Load Type : AK ~	Dynamic Factor ((+Mu)	1+(45-lambda)/135
	• User Input			
(Unit : KN)	Dynamic Factor (1+Mu) for Bogie			1.4
$P_1=10K$ $P_2=10K$	Dynamic Factor (1+Mu) for UDL			1
	Load Reliability Factor O Auto Calculation O User Input			
D1 I K I4 1 10K 1.5	O Auto Calculation	- SNIP actor (Gamm		1.5 1.25
D1 I K I4 No Load(kN) Spacing(m) K 14 1 10K 1.5 2 10K end	 Auto Calculation User Input Load Reliability F 	- SNIP actor (Gamm		
No Load(kN) Spacing(m) K 14 1 10K 1.5 2 10K end	 Auto Calculation User Input Load Reliability F Load Reliability F 	- SNIP actor (Gamm actor (Gamm	a f) for UDL	1.25
D1 I K I4 No Load(kN) Spacing(m) K 14 1 10K 1.5 2 10K end	 Auto Calculation User Input Load Reliability F Load Reliability F Lane Factor (s1) 	- SNIP actor (Gamm actor (Gamm	a f) for UDL Lane 2	1.25 Lane 3 and more


8. Traffic Load AK, N11 Update to Russia Standard

- The axle load of N11 has changed from 14 K (14 x 11 = 154 kN) to 196 kN to the latest amendments to SP 35.13330.2011.
- N11 (2nd Edition) vehicle has been added.
- Load > Moving Load > Vehicle

Standard Name				
Russia - Road Bridge and Railway Bridge	Consider the Effect of Tv	vo Vehicles as we	ll as One Vehide	
/ehicular Load Properties	Reduction Factor		0.75	
Vehicular Load Name : N11(2nd edition)	Dynamic Factor			
Vehicular Load Type : N11(2nd edition)	V O Auto Calculation			
	Material Type RC			
	Bridge Type Rai	road Bridge, Sub	way, Tram	
P1 P2 P3 P4	Dynamic Factor (1+Mu) 1+10/	(20+lambda)	
	User Input			
	Dynamic Factor (1+Mu)	1	
		20		
< > < > < > D1 D2 D3				
< > < > < > D1 D2 D3	Load Reliability Factor			
No Load(kN) Spacing(m)	Load Reliability Factor			
No Load(kN) Spacing(m) 1 196 1.2				
No Load(kN) Spacing(m) 1 196 1.2 2 196 1.2	O Auto Calculation	(Gamma f)	1,1	
No Load(kN) Spacing(m) 1 196 1.2	Auto Calculation O User Input	(Gamma f)	1,1	
No Load(kN) Spacing(m) 1 196 1.2 2 196 1.2	Auto Calculation O User Input		0.8	
No Load(kN) Spacing(m) 1 196 1.2 2 196 1.2	 Auto Calculation User Input Load Reliability Factor 			

9. Longitudinal Stiffener Input Measured from Bottom of Steel Composite Girder

- Longitudinal stiffeners can be defined with respect to the bottom of the steel beam. Previously, the distance was measured only from the top surface.
- This would be useful when you add longitudinal stiffeners for the tapered girders.

