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Abstract
Individuals with autism increasingly enroll in universities, but little is known about predictors for their success. This study 
developed predictive models for the academic success of autistic bachelor students (N = 101) in comparison to students 
with other health conditions (N = 2465) and students with no health conditions (N = 25,077). We applied propensity 
score weighting to balance outcomes. The research showed that autistic students’ academic success was predictable, and 
these predictions were more accurate than predictions of their peers’ success. For first-year success, study choice issues 
were the most important predictors (parallel program and application timing). Issues with participation in pre-education 
(missingness of grades in pre-educational records) and delays at the beginning of autistic students’ studies (reflected in age) 
were the most influential predictors for the second-year success and delays in the second and final year of their bachelor’s 
program. In addition, academic performance (average grades) was the strongest predictor for degree completion in 3 years. 
These insights can enable universities to develop tailored support for autistic students. Using early warning signals from 
administrative data, institutions can lower dropout risk and increase degree completion for autistic students.

Laymen Summary 

What is already known about the topic?
Autistic youths increasingly enter universities. We know from existing research that autistic students are at risk of 
dropping out or studying delays. Using machine learning and historical information of students, researchers can predict 
the academic success of bachelor students. However, we know little about what kind of information can predict whether 
autistic students will succeed in their studies and how accurate these predictions will be.

What does this article add?
In this research, we developed predictive models for the academic success of 101 autistic bachelor students. We 
compared these models to 2,465 students with other health conditions and 25,077 students without health conditions. 
The research showed that the academic success of autistic students was predictable. Moreover, these predictions were 
more precise than predictions of the success of students without autism.
For the success of the first bachelor year, concerns with aptitude and study choice were the most important predictors. 
Participation in pre-education and delays at the beginning of autistic students’ studies were the most influential predictors 
for second-year success and delays in the second and final year of their bachelor’s program. In addition, academic 
performance in high school was the strongest predictor for degree completion in 3 years.

Implications for practice, research, or policy
These insights can enable universities to develop tailored support for autistic students. Using early warning signals from 
administrative data, institutions can lower dropout risk and increase degree completion for autistic students.
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Introduction
Autism (Autism Spectrum Disorder; ASD; American 
Psychiatric Association [APA], 2013) is a neurodevelop-
mental condition characterized by qualitative differences 
in social interaction, communication, repetitive, stereo-
typed behavior, and sensory perception. As the number of 
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autistic students in higher education increases (Bakker 
et al., 2019; Nuske, Rillotta, et al., 2019; Zeedyk et al., 
2016), insights into their academic success grow (Anderson 
et al., 2017). Innovative statistical analyses, such as 
machine learning to predict autistic students’ academic 
success, could enhance our understanding, but data-driven 
research is still limited (Chown et al., 2016). To uncover 
differences in academic success patterns between autistic 
students and their peers in this preregistered study (Bakker 
et al., 2021), we studied the feasibility of predictive mod-
eling of academic success and the importance of success 
predictors. We define academic success as the completion 
of a bachelor’s degree; the opposite, dropping out, indi-
cates a lack of academic success.

Predictive modeling is a machine learning technique to 
predict future observations and evaluate their predictive 
power. Predictive modeling plays a vital role in theory 
building. It helps to uncover new predictive measures, cre-
ate new hypotheses, find improvements to existing explan-
atory models, compare competing theories, and quantify 
predictive accuracy (Shmueli & Koppius, 2011). Predictive 
modeling in higher education (Namoun & Alshanqiti, 
2020) can elucidate educational outcomes, evaluate poli-
cies, and help to apply interventions (Jia & Maloney, 2015). 
Autistic students risk delaying or dropping out (Chown 
et al., 2016; Van Hees et al., 2015). Their transition to uni-
versity is challenging, as they leave familiar support and 
routines and face new relationships and academic demands 
(Beardon et al., 2009; Lambe et al., 2018). Evidence-based 
warning systems are necessary to detect at-risk autistic stu-
dents and offer them support (Anderson et al., 2019; Gelbar 
et al., 2014; Meinel et al., 2021; Zeedyk et al., 2016).

The number of studies on the application of predictive 
algorithms in the field of autism is growing (Hyde et al., 
2019; Thabtah, 2018; Vabalas et al., 2019), in particular 
related to diagnostic or neurological aspects. Their use in 
educational studies is scarce (Madaus et al., 2020; Morgan, 
2018). Qualitative literature identified factors influencing 
autistic academic success (Accardo et al., 2019; Cage et al., 
2020; Cox et al., 2021; Francis et al., 2017; Gillespie-Lynch 
et al., 2017; Shmulsky et al., 2017). Several factors were 
related to the student, such as autism-related characteristics 
(high intrinsic motivations, attention to detail, intense inter-
ests, executive functioning and social skills, inflexibility, 
sensory overstimulation, and mental health), identity (self-
awareness, self-advocacy, and achieving goals), and con-
nections (family support, relationships with and 
understanding from professors and peers). Other factors 
were related to the institution, such as norms (accommoda-
tion requirements, good grades), formal accommodations 
(transition planning, financial aid, extended time or distrac-
tion-free environment), and personalized adaptations. No 
studies employ predictive modeling to predict autistic stu-
dents’ academic outcomes or compare autistic and nonau-
tistic students.

Predictive modeling in higher education aims to make 
successful predictions to improve student outcomes 
(Alyahyan & Düştegör, 2020). About 70% of studies on 
the prediction of higher education success predict factors 
of study progression, such as student grades. In compari-
son, only 10% predict longitudinal student outcomes, that 
is, dropping out or completing a degree (Hellas et al., 
2018). To develop timely interventions for autistic stu-
dents, early and effortless predictions of longitudinal stu-
dent outcomes are needed. Accordingly, it is crucial to 
select a limited set of the most influential features availa-
ble the student begins their academic studies, such as 
background characteristics (sex, age, pre-education), ear-
lier educational outcomes (grades), and motivation 
(Bonifro et al., 2020; Jia & Maloney, 2015; Khan & Ghosh, 
2021; Thabtah, 2018).

We studied longitudinal, balanced data of a comprehen-
sive population sample across three groups at a major 
Dutch university (N = 27,643): autistic students (AS); stu-
dents with other conditions (OC), including ADD/ADHD 
and dyslexia; and students with no conditions (NC). We 
compared autistic and nonautistic students to predict their 
academic success after each bachelor year. We developed 
five predictive models based on seven cohorts of historical 
student data. We selected and studied features that were 
available before the beginning of their studies and are reg-
istered and readily available in most administrative systems 
of higher education institutions. We expect predictive mod-
eling of autistic students’ academic success to be feasible 
and show different important predictors compared to their 
peers.

Methods

Study population

Our convenience sample included 27,643 first-year, full-
time students in 54 bachelor programs of the Vrije 
Universiteit Amsterdam, from 2010 to 2016 (M = 19 years 
old, 55.0% female) with study measures from the student 
information system of the university. This research univer-
sity offers a range of full-time bachelor and master pro-
grams in Humanities, Natural sciences, Social sciences & 
Law, and Health & Life sciences. It attracts students from 
the greater area of Amsterdam and abroad. The Dutch 
higher education system follows the European Bologna 
Process, which includes 48 European countries (European 
Commission, n.d.), with a three-cycle higher education 
system consisting of bachelor’s, master’s, and doctoral 
studies, mutual recognition of qualifications, and a com-
mon system of quality assurance.

The university created the data set from its student 
information systems, providing validated, uniform, and 
anonymized student data. Specific data on socioeconomic 
status and ethnicity were not recorded. The institution’s 
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Scientific and Ethical Review Board granted ethical clear-
ance (reference number VCWE-2017-123).

The study population consisted of three participant 
groups: (1) 101 students with a clinical diagnosis of ASD 
(0.37%; comorbidity: 28.7%), (2) 2,465 students with other 
conditions (8.92%; ADD/ADHD: 1.36%; chronic diseases: 
1.02%; dyslexia: 4.43%; physical disabilities: 0.96%; psy-
chological disabilities: 0.54%; and other disabilities, such 
as language deficiency and deafness: 1.25%; comorbidity: 
11.6%), and (3) 25,077 students with no recorded condi-
tions (90.72%). The prevalence of autism in the Netherlands 
is comparable to other countries (Hoekstra, 2018). 
However, the prevalence of autistic students and students 
with other conditions is low. As autistic students in this 
study were restricted to those who disclosed their diagno-
sis, we expect the actual prevalence of autistic students to 
be more in agreement with estimations between 1.0% and 
1.5% (Centers for Disease Control and Prevention, 2022). 
Autistic students, and students with other conditions, 
included only those who disclosed their formally registered 
diagnosis (Bakker et al., 2020) provided by qualified clini-
cians independently from this study. We collapsed the six 
non-ASD disability categories into one group.

One-third of autistic students in the Netherlands report 
barriers in their studies, but many students with other dis-
abilities or without disabilities face similar issues (Van den 
Broek et al., 2017; Van Rooij et al., 2018). About 30% of 
the total student population has a disability; one-third of 
students with disabilities experience many impediments in 
their studies (10% to 11%; Van den Broek et al., 2013).

In the Netherlands, a psychiatrist diagnoses ASD 
according to the established Diagnostic and Statistical 
Manual of Mental Disorders (4th ed., text rev.; DSM-
IV-TR) or Diagnostic and Statistical Manual of Mental 
Disorders (5th ed.; DSM-5) criteria based on a detailed 
examination, including observations and parent interviews 
by multiple experienced clinicians (psychologists, psychi-
atrists, and educators).

Measures

See Appendix Table 5 for a list of all variables, their meas-
urement scales, and their application in propensity score 
weighting (PSW) or predictive modeling (PM).

Demographic and enrollment characteristics. Sex is male or 
female. Age (in years) in Dutch higher education is 
recorded on October 1 in the year students enroll. Cohort 
is the academic year a student enrolled for the first time in 
their academic program (Bakker et al., 2019). Days 
between application and September 1 is the number of 
days between the application and the start of the first bach-
elor year (September 1). Parallel program indicates 
whether a student enrolled in one or more other bachelor 

programs in the first bachelor year. STEM shows whether 
a student enrolled in a science, technology, engineering, 
and mathematics study program, based on the STEM Des-
ignated Degree Program List (2016).

Educational background. Regular pre-education. In the 
Netherlands, there are five learning paths to higher educa-
tion: (a) high school VWO (Voorbereidend Wetenschap-
pelijk Onderwijs, university preparatory education), (b) a 
vocational foundation year (high school HAVO (Hoger 
Algemeen Voortgezet Onderwijs, senior general second-
ary education) with the first-year qualification from a uni-
versity of applied sciences), (c) a qualification in Dutch 
higher education (academic or vocational), (d) other Dutch 
qualifications, such as a university entrance examination 
(colloquium doctum), and (e) a foreign qualification 
equivalent to VWO (Bakker et al., 2020). We classified 
regular pre-education as true if the highest pre-education 
was not classified as (d) other Dutch qualifications. Aver-
age grade secondary education is the average grade of all 
subjects a student chose to graduate in; grades range from 
1 to 10. Average grade secondary education missing is an 
indication if the average grade secondary education is 
missing. Average grade math secondary education is the 
average grade in algebra in secondary school; grades range 
from 1 to 10. Average grade math secondary education 
missing is an indication if the average grade math second-
ary education is missing.

Success. All bachelor programs consist of 180 European 
Credits (ECs) with 60 ECs in three academic years. Drop-
out after 1 year and Dropout after 2 years means that a stu-
dent did not enroll in the same study program in the 
following academic year. We derived success after 3 years 
from dropout after 1, 2, or 3 years, and degree completion 
within 3 years. If a student dropped out within three aca-
demic years, they were categorized as a “dropout”; if a 
student received a degree after 3 academic years, they 
were categorized as “degree”; and otherwise, they were 
categorized as “re-enrolled.”

Analytical strategy

We used R for statistical computing, version 4.1.0, for data 
wrangling and analysis (R Core Team, 2017). We analyzed 
the outcomes using PSW to address biases associated with 
the differences in group sizes. The propensity score is a 
number between zero and one and represents the condi-
tional probability that a person is assigned to a particular 
group, given a set of confounders (Austin, 2011). We 
assessed covariate balance using the cobalt package, ver-
sion 4.2.3 (Greifer, 2019). We predicted academic success 
after 3 years using predictive modeling (Alyahyan & 
Düştegör, 2020).
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Data selection, imputation, propensity score weighting, and 
variable balance evaluation. We imputed the dataset to pre-
vent bias associated with list-wise deletion. We did not 
impute values for the outcomes or disability (Newman 
et al., 2018). The measures sex, highest pre-education, 
cohort, and average grade math secondary education with 
median imputation and stop method maximum absolute 
standardized mean difference (es. max) gave the best bal-
ance, with an overlap in the interquartile range of 10.9% 
for AS-OC and 14.3% for AS-NC. We kept the sample size 
of AS constant to 101 and reduced the sample size of OC 
from 2465 to a weighted size of 89.38 and NC from 25,077 
to a weighted size of 92.28. Table 1 presents the balance of 
AS, OC, and NC. The weighted samples represent the 
best-matched comparison between the three groups.

Transformation and outlier removal. As none of the continu-
ous measures were normally distributed, we transformed 
the data using the best Normalize package, version 1.8.0 
(Peterson & Cavanaugh, 2019). We used centering and 
scaling for age and days between the application and Sep-
tember 1, log10 transformation for average grade second-
ary education, and square root transformation for average 
grade math algebra secondary education. For optimal 
model convergence, we scaled continuous measures to a 
range between 0 and 1. We remove outliers that were more 
than three standard deviations (z-scores) away from the 

mean (AS: 4, 3.96%; OC: 69, 2.80%; NC: 893, 3.56%; 
weighted totals: AS: 97.0, OC: 91.1, NC: 90.3; unweighted 
totals: AS: 97, OC: 2,396, NC: 24,184). Table 2 presents 
the descriptive statistics of AS, OC, and NC without 
outliers.

Predictive modeling. We selected features that were availa-
ble before the first enrollment (Bonifro et al., 2020; Chiang 
et al., 2012; Jia & Maloney, 2015) and are generally used in 
predictive modeling in higher education (Khan & Ghosh, 
2021; Pingry O’Neill et al., 2012; Van Rooij et al., 2018): 
demographics (sex, age), educational background (type of 
pre-education), previous outcomes (average grade in sec-
ondary education and average grade math in secondary 
education), and the field of study (science, technology, 
engineering, and math [STEM] both true and false). We 
included two additional measures that could be correlated 
to academic success or delays: (a) days between the appli-
cation and September 1 as an indicator of motivation, exec-
utive functioning, and procrastination (Anderson, 2018; 
Nuske, Rillotta et al., 2019a; Robertson & Ne’eman, 2008; 
Van Hees et al., 2015; Vincent, 2019) and (b) parallel pro-
gram, because following two study programs heightens the 
risk of dropping out. The final model formula is outcome 
measure ∼ sex + age + regular pre-education + average 
grade secondary education + average grade math second-
ary education + average grade secondary education 

Table 1. Balance of the treatment and comparison groups without outliers.

Measures Unweighted means (%) Weighted means (%) Population

AS OC NC AS OC NC Mean (%)

Sex
 Male 0.71 0.41 0.45 0.71 0.62 0.61 0.45
 Female 0.29 0.59 0.55 0.29 0.38 0.39 0.56
Highest pre-education
 High school VWO 0.75 0.80 0.83 0.75 0.81 0.81 0.83
 Vocational foundation year 0.13 0.14 0.10 0.13 0.12 0.09 0.10
 Degree in higher education 0.02 0.04 0.05 0.02 0.03 0.04 0.04
 Other Dutch pre-education 0.10 0.03 0.02 0.10 0.04 0.05 0.02
Cohort
 2010 0.11 0.10 0.19 0.11 0.09 0.15 0.18
 2011 0.21 0.12 0.16 0.21 0.16 0.18 0.16
 2012 0.11 0.13 0.14 0.11 0.12 0.12 0.14
 2013 0.07 0.15 0.14 0.07 0.13 0.11 0.14
 2014 0.20 0.18 0.13 0.20 0.18 0.17 0.14
 2015 0.17 0.17 0.11 0.17 0.17 0.13 0.12
 2016 0.14 0.16 0.13 0.14 0.15 0.14 0.12
Average grade
 Average grade math SE 6.54 6.59 6.57 6.54 6.52 6.52 6.55
 Not missing 0.85 0.92 0.93 0.85 0.94 0.93 0.94
 Missing 0.15 0.08 0.07 0.15 0.06 0.07 0.06

AS: autistic students; OC: students with other conditions; NC: students with no recorded conditions; SE: secondary education; VWO: 
Voorbereidend Wetenschappelijk Onderwijs.
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(missing) + average grade math secondary education 
(missing) + regular pre-education + days between applica-
tion and September 1 + STEM + parallel program.

To perform the steps in the predictive modeling process 
(Shmueli, 2010), we used the caret package, version 6.0.88 
(Kuhn, 2021), for partitioning of the data; selection of 
important predictors, that is, features; building the predic-
tion models; validation and evaluation of the models; and 
selection of the optimal model. To avoid imbalance bias, 
we created stratified, balanced data splits for each research 
group (Meinel et al., 2021). Random sampling occurred 
within each class of the dependent measures and preserved 
the overall class distribution of the data (Hellas et al., 
2018). To prevent bias in accuracy for small samples, a pos-
sible risk in machine learning research in the field of autism 
(Vabalas et al., 2019), and to reduce the risk of overfitting 
for larger samples (Leppink, 2020), we applied 10 × 
10-fold repeated cross-validation as the resampling scheme. 
We created the train and test sets in three splits within each 
research group (80/20%, 70/30%, and 60/40%).

To predict the outcomes and assess variable importance, 
we built and trained five weighted models that cover various 
possibilities in predictive modeling for multiclass outcomes: 
classification and regression trees, random forest, neural 
network, boosting, and bagging models. Classification and 

regression trees are obtained by recursively partitioning 
data and fitting a simple prediction model within each parti-
tion. The partitioning can be represented as a decision tree. 
Classification trees are designed for dependent variables 
that take a finite number of unordered values, with predic-
tion error measured in misclassification cost (Loh, 2011). 
Random forest combines several randomized decision trees 
and aggregates their predictions by averaging (Biau & 
Scornet, 2016). Penalized multinomial regression general-
izes logistic regression to multiclass problems, utilizing 
penalties to improve the fit of the data (Greene, 2012; Kuhn 
& Johnson, 2013). Stochastic gradient boosting constructs 
additive regression models by sequentially fitting a regres-
sion tree (base learner) by least squares. At each iteration, a 
fraction of the training data is drawn at random without 
replacement to fit the base learner (Friedman, 2002). Bagged 
classification and regression trees aggregate bootstrap sam-
ples of the original data to reduce the variance of classifica-
tion and regression trees (Breiman, 1996).

We analyzed (1) classification and regression trees 
(importing the rpart package, version 4.1.15 [Therneau & 
Atkinson, 2019]); (2) random forest (importing ranger, 
version 0.12.1 [Wright & Ziegler, 2017]); (3) penalized 
multinomial regression (importing nnet, version 7.3.16 
[Venables & Ripley, 2002]); (4) stochastic gradient 

Table 2. Background, enrollment, and success characteristics for the three participant groups (N = 26,677).

AS OC NC p value Group differences

 N = 97 N = 2396 N = 24,184

Age (in years) 19.0 [18.0–21.0] 19.0 [18.0–21.0] 19.0 [18.0–20.0] <0.001 AS > NC; OC > NC
Sex: Female 27 (27.8%) 1,414 (59.0%) 13,352 (55.2%) <0.001 AS < OC and NC
Average grade SE 6.7 [6.4–7.1] 6.6 [6.3–6.9] 6.6 [6.3–6.9] 0.024 OC < NC
Average grade math SE 6.0 [6.0–7.0] 6.5 [6.0–7.0] 6.5 [6.0–7.0] 1.000 n.s.
Regular pre-education: True 87 (89.7%) 2333 (97.4%) 23,679 (97.9%) <0.001 AS < OC and NC
Cohort: <0.001  
 2010 11 (11.3%) 244 (10.2%) 4,648 (19.2%) AS > OC; AS < NC
 2011 20 (20.6%) 294 (12.3%) 3,928 (16.2%) AS > NC > OC
 2012 11 (11.3%) 301 (12.6%) 3,447 (14.3%) AS < OC < NC
 2013 7 (7.2%) 361 (15.1%) 3,490 (14.4%) AS < NC < OC
 2014 19 (19.6%) 424 (17.7%) 3,224 (13.3%) AS > OC > NC
 2015 16 (16.5%) 403 (16.8%) 2,697 (11.2%) AS < OC; AS > NC
 2016 13 (13.4%) 369 (15.4%) 2,750 (11.4%) AS < OC; AS > NC
Days between application and 
September 1

129.0 [69.0-–168.0] 128.0 [64.0–176.0] 125.0 [56.0–168.0] <0.001 OC > NC

STEM 51 (52.6%) 739 (30.8%) 6,794 (28.1%) <0.001 AS > OC and NC
Parallel program: True 4 (4.1%) 84 (3.5%) 744 (3.1%) 1.000 n.s.
Dropout after 1 year 23 (23.7%) 492 (20.5%) 6,533 (27.0%) <0.001 OC < NC
Dropout after 2 years 36 (37.1%) 614 (25.6%) 7,613 (31.5%) <0.001 AS > OC; OC < NC
Success after 3 years <0.001  
Degree 20 (20.6%) 584 (24.4%) 7,226 (29.9%) AS < OC < NC
Dropout 36 (37.1%) 662 (27.6%) 7,928 (32.8%) AS > NC > OC
Re-enrolled 41 (42.3%) 1,150 (48.0%) 9,030 (37.3%) AS > OC; AS < NC

AS: students with ASD; NC: students with no recorded conditions; n.s.: no significant group differences; OC: students with other conditions; SE: 
secondary education.
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boosting (importing gbm, version 2.1.8 [Greenwell et al., 
2020]); (5) bagged classification and regression trees 
(importing ipred, version 0.9.11 [Peters & Hothorn, 
2021]). To reduce the data dimensionality of relevant fea-
tures (Rahman et al., 2020), we determined the variable 
importance for each model based on the training set using 
the packages’ built-in methods.

We compared the performance of the models on the 
training and test sets with confusion matrices using clas-
sification accuracy with 95% confidence intervals (CIs), κ, 
and the no information rate (NIR). We applied a one-sided 
binomial test. The NIR is the best guess given no informa-
tion beyond the overall distribution of the prediction 
classes, which is the largest class percentage of the out-
come measure, that is, the majority class (Kuhn, 2015). A 
predictive model should at least outperform the NIR to add 
predictive value.

We tested all models with a random selection of 97 OCs 
and 97 NCs with the same cohort distribution as AS to 
exclude misinterpretations due to differences in sample 
size.

Preregistration

Following this study’s preregistration (Bakker et al., 2021), 
we report additional data exclusions, inclusions, and 
changes. To contrast predictive models on academic suc-
cess over the years, we added predictive models for drop-
outs after 1 and 2 years. Because one of the predicted 
outcomes was categorical with three levels, we applied 

appropriate predictive modeling procedures. We selected 
models that accepted case weights and represented differ-
ent types of models.

Community statement

As nonautistic autism researchers, we value community 
involvement and are motivated to compare students with 
and without autism. Having been nonautistic students 
might have biased us by viewing neurotypical normality in 
higher education, such as enjoying social life or extracur-
ricular activities, as the norm. This study was part of a 
Ph.D. project that was discussed in the community of 
researchers of the Netherlands Autism Register (NAR), 
with strong involvement of autistic stakeholders.

Results

Prediction models

For AS, the best-performing models are penalized multi-
nomial regression for dropout after 1 year, and random for-
est for dropout after 2 years and success after 3 years. 
There appears to be no optimal technique per group or suc-
cess measure. See Table 3 for the performance metrics of 
each group’s best-performing models.

The improved models outperformed the simple classifi-
cation and regression tree models. The predictive power of 
all models was low on both the training and test sets. None 
of the models was significant, except for the NC model for 

Table 3. Best performing models for the three participant groups.

Outcome Group Model Split Set Accuracy (95% CI) κ NIR (%) p value

Dropout AS PMR 80/20% Test 83.3% (58.6%–96.4%) 0.34 77.8 0.409
After 1 year Train 77.2% (66.4%–85.9%) 0.12 75.9 0.457
 OC SGB 60/60% Test 79.7% (77.0%–82.2%) 0.02 79.5 0.455
 Train 79.5% (77.3%–81.6%) 0.01 79.4 0.490
 NC SGB 70/30% Test 73.2% (72.1%–74.2%) 0.02 73.0 0.381
 Train 73.0% (72.3%–73.6%) 0.01 73.0 0.518
Dropout AS RF 70/30% Test 75.0% (55.1%–89.3%) 0.39 64.3 0.162
After 2 years Train 73.9% (61.9%–83.7%) 0.36 62.3 0.029*
 OC PMR 80/20% Test 74.7% (70.5%–78.5%) 0.04 74.5 0.482
 Train 74.8% (72.8%–76.7%) 0.04 74.3 0.349
 NC SGB 70/30% Test 69.9% (68.9%–71.0%) 0.15 68.5 0.005**
 Train 70.1% (69.4%–70.8%) 0.15 68.5 <0.001***
Success AS RF 70/30% Test 64.3% (44.1%–81.4%) 0.40 42.9 0.018*
After 3 years Train 68.1% (55.8%–78.8%) 0.47 42.0 <0.001***
 OC PMR 70/30% Test 51.1% (47.4%–54.8%) 0.13 48.1 0.054 .
 Train 50.4% (47.9%–52.8%) 0.12 48.0 0.027*
 NC RF 60/60% Test 47.0% (46.0%–48.0%) 0.20 37.3 <0.001***
 Train 60.8% (60.0%–61.6%) 0.41 37.3 <0.001***

AS: students with ASD; CI: confidence Interval; NC: students with no recorded conditions; NIR: no information rate; OC: students with other 
conditions; RF: random forest; PMR: penalized multinomial regression; SGB: stochastic gradient boosting; . = p < 0.1, *p < 0.05, **p < 0.01, 
***p < 0.001.
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dropout after 2 years and success after 3 years. However, 
the best-performing model for each outcome and group 
outperformed the NIR, that is, the best guess based on the 
majority class. The benchmark of the models’ accuracy 
shows that the predictability of academic success is higher 
for autistic students than for their peers. This difference 
increases throughout the bachelor program as the ratio 
between the prediction accuracy and the NIR increases for 
AS (dropout after 1 year: 5.5%, OC: 0.2%, NC: 0.2%; 
dropout after 2 years: AS: 10.7%, OC: 0.2%, NC: 1.4%; 
success after 3 years: AS: 21.4%, OC: 3.0%, NC: 9.7%). 
See Supplement 1 for the performance metrics of all 
models.

Feature selection and variable importance

See Table 4 for the variable importance of each group’s 
best-performing models for each outcome.

The model’s feature selection and variable importance 
were different for each group for all outcome measures. 
The number of important features (importance > 40%) for 
the AS models was higher than for the OC and NC models 
and different in rank (dropout after 1 year: AS: 4 features 
(Parallel program: 100.00; Days between application and 
September 1: 87.94; Age: 56.55; Average grade math: 
44.84), OC: 2 features (Days between application and 
September 1: 100.00; Average grade secondary education: 
44.57), NC: 2 features (Average grade secondary educa-
tion: 100.00; Days between application and September 1: 
91.44); dropout after 2 years: AS: 5 features (Age: 100.00; 
Average grade secondary education missing: 91.87; 
Average grade secondary education: 51.52; Days between 
application and September 1: 46.18; Average grade math 
secondary education: 41.68), OC: 2 features (Age: 100.00; 
Days between application and September 1: 65.31), NC: 2 
features (Days between application and September 1: 
100.00; Average grade secondary education: 69.29); suc-
cess after 3 years: AS: 4 features (Age: 100.00; Average 
grade secondary education: 88.20; Days between applica-
tion and September 1: 82.73; Average grade math second-
ary education: 63.86), OC: 3 features (Age: 100.00; Days 
between application and September 1: 68.34; Average 
grade secondary education: 62.28), NC: 2 features (Days 
between application and September 1: 100.00; Average 
grade secondary education: 89.18)).

Discussion

This longitudinal study examined (1) whether it is possible 
to predict academic success after three bachelor years and 
(2) which aspects are important predictors. Predicting the 
academic success of autistic students was feasible. The 
best-performing models for the academic success of autis-
tic students outperformed the NIR models for dropout after 
1 and 2 years and academic success after 3 years. Over the 

years of the bachelor program, this difference in perfor-
mance increases. Furthermore, the study shows that the 
academic success of autistic students is more predictable 
than their peers’. The accuracy of autistic students’ success 
models is higher than their peers, success models. In addi-
tion, the differences between the accuracy of autistic stu-
dents’ best-performing models and the NIR models are 
more extensive than those for students without autism. A 
reason could be that the variation in autistic students is 
smaller than in students with other conditions or no condi-
tions, which gives predictions more power.

The differences in order and importance of the predic-
tors for the three groups provide more insight into the 
underlying mechanisms that could influence academic 
success over the three bachelor years. Out of the ten pre-
dictors, three appear to be the strongest for all students 
(>40%): (1) age, (2) the average grade in secondary edu-
cation, and (3) the number of days between their applica-
tion and the start of the academic year. For autistic students, 
additional predictors are (4) parallel program, (5) average 
grade math in secondary education, and (6) average grade 
secondary education (missing). See Table 4 for a compari-
son of variable importance and patterns.

The variable importance of predictors in machine learn-
ing can reveal underlying mechanisms for theory building 
(Shmueli & Koppius, 2011). In the following sections, we 
will discuss the prediction of the academic success of 
autistic students in three bachelor years. We will explain 
how the most important predictors are proxies for insights 
into three mechanisms for their academic success: (1) 
study choice and transition to higher education (the num-
ber of days between their application and the start of the 
academic year, parallel program), (2) long-term issues 
with earlier educational fit and inclusion (age, average 
grade secondary education (missing), and (3) earlier aca-
demic performance (average grade in secondary educa-
tion, average grade math in secondary education).

Prediction of first-year dropout

Enrollment in a parallel program and the number of days 
between application and the start of the academic year are 
the most important predictors of autistic students’ first-
year success. These predictors reveal information on study 
choice and transition to higher education. Only 4.1% of 
autistic students enrolled in parallel bachelor programs. 
They enrolled earlier than their peers (129 days before 
September 1, 95% CI: 69–168). The second field of study 
could be a sign of strong academic commitment or the 
opposite: uncertainty and postponement of the choice of a 
field of study (Van den Broek et al., 2017). Reasons for 
dropping out of a parallel program are heavy study load 
(Ward & Webster, 2018), transition barriers (Anderson, 
2018; White et al., 2017; Zeedyk et al., 2019), or time 
management and planning (Nuske, McGhee Hassrick, 
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et al., 2019). The number of days is a proxy for short-term 
problems that delay applications and captures personal or 
academic issues, which could influence a later tendency to 
dropout or delay (Jansen et al., 2016; Van den Broek et al., 
2013; Van den Broek et al., 2017; Van Rooij et al., 2018). 
Students who applied later might have had issues in high 
school examinations, resits, choosing their program, or 
switching from other programs. An additional explanation 
might be that autistic students or their parents received less 
transition planning support.

Prediction of the first-year dropout shows that autistic 
students at risk of dropping out have difficulties transition-
ing to the university. The relatively late application dem-
onstrates uncertainty, or their study choice for an additional 
program is less viable than autistic students who persist.

Prediction of second-year dropout

In the second year, the order of predictors reverses. 
Dropout in the first bachelor year has taken its toll on 
almost one in four autistic students (23.7%). As a result, 
more profound issues with participation in pre-education 
have surfaced that influence second-year dropout rates. 
Measures that reflect one or more years of delay at the 
beginning of autistic students’ academic endeavors predict 

study dropout in the second year: age and the missingness 
of average grades in secondary education. These predic-
tors could be related to long-term issues with earlier edu-
cational fit and inclusion.

Previous analysis of the same data on autistic students’ 
background characteristics showed that they were older 
when they enrolled for the first time in higher education (19, 
95% CI: 18–21; Bakker et al., 2019). Higher age may reflect 
the long-term difficulties with educational inclusion that 
autistic students experience before transitioning to univer-
sity: issues with social relationships and bullying, lack of 
appropriate support, self-advocacy and transition planning, 
and problems with executive skills resulting in delays in high 
school (Anderson et al., 2017; Auger, 2013; Pinder-Amaker, 
2014; Zeedyk et al., 2019). The missingness of the average 
grade in secondary education (9.3%) reflects dropout from 
regular education. Previous research on the same data shows 
that over 10% of autistic students had an irregular, longer 
learning path through entrance exams instead of a regular 
high school exam toward the university, in contrast to 2.6% 
of students with other conditions and 2.1% of students with-
out conditions (Bakker et al., 2019). This deviation from the 
conventional learning path demonstrates autistic students’ 
persistence and determination to participate in higher educa-
tion but does not guarantee their success.

Table 4. Variable importance.

Feature / Research group Dropout after 1 year Dropout after 2 years Success after 3 years

AS OC NC AS OC NC AS OC NC

Days between application 
and September 1

87.94 100.00 91.44 46.18 65.31 100.00 82.73 68.34 100.00

Average grade secondary  
education

34.88 44.57 100.00 51.52 28.9 69.29 88.20 62.28 89.18

Age 56.55 11.56 11.11 100.00 100.00 21.86 100.00 100.00 39.89

Average grade math 44.84 9.00 1.08 41.68 16.35 5.44 63.86 18.65 31.47

Average grade secondary  
education missing

30.91 0.00 4.07 91.87 2.94 0.00 16.5 1.93 0.00

Parallel program 100.00 2.35 0.00 13.15 5.45 0.30 2.53 1.72 2.00

Sex (female) 3.36 2.09 13.56 1.12 5.44 14.29 31.05 0.06 15.47

Regular pre-education 9.27 0.00 0.00 13.22 0.00 20.16 0.00 5.56 8.12

Average grade math 
missing

4.61 0.00 1.99 11.14 7.92 3.98 2.49 1.61 1.78

STEM 0.00 1.61 0.00 0.00 3.01 0.98 9.24 0.00 7.25

AS: students with ASD; NC: students with no recorded conditions; OC: students with other conditions; features > 40.00 printed in white.
 100.00
 80.00-99.99
 60.00-79.99
 40.00-59.99
 20.00-39.99
 0.01-19.99
 0.00
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Prediction of third-year success

Prediction of third-year success concerns dropout rates, 
delays, and degree completion. The third group of predic-
tors, related to autistic students’ earlier academic perfor-
mance, also becomes important: the average grade in 
secondary education in general and in math. Again, the 
measured age reflects obstacles that have resulted in one or 
more years of delay at the beginning of autistic students’ 
academic careers. It predicts study dropout or delays in 
their bachelor’s program after 3 years. The missingness of 
the average grade in secondary education is less important, 
as students with irregular learning paths most likely have 
dropped out in the second year. Predictors for degree com-
pletion are the average grade in secondary education in 
general and in math, which indicate academic performance 
in secondary education. Average grades are better predic-
tors of success than IQ since they capture aspects of per-
sonalities that have independent predictive power beyond 
IQ (Borghans et al., 2016). Furthermore, grade perfor-
mance may be influenced by institutional preferences for 
particular styles of academic behavior (Tinto, 1975) or 
access to academic accommodations. Both grade predic-
tors show that intellectual capabilities and institutional fit 
are equally crucial to autistic students’ academic success 
(Tinto, 1987, 2012; Van Rooij et al., 2018).

Comparison of important predictors

Comparing prediction patterns of autistic students’ success 
to their peers’ success shows that, to a limited extent, these 
prediction patterns are unique to autistic students’ success. 
First-year success predictors are similar to their peers. 
However, a parallel program is most predictive for autistic 
students, which could imply that the personal capacity of 
autistic students and issues with transition are more impor-
tant than study choice or academic performance-related 
predictors (Van den Broek et al., 2013).

Second-year success predictors of autistic students are 
more similar to students with other conditions success’ and 
appear to reflect long-term issues with an educational fit 
for both groups. In addition, predictors related to irregular 
learning paths reflect earlier education participation issues.

Third-year success predictors show that long-term 
issues with educational fit persist, resulting in delays simi-
lar to students with other conditions. On the other hand, 
and consistent with earlier findings, earlier academic per-
formance, expressed as average grades in secondary edu-
cation, is equally vital for autistic students’ long-term 
academic success as for their peers’ (Flegenheimer & 
Scherf, 2021; Gelbar et al., 2015; Gurbuz et al., 2019). As 
most autistic students in this study were enrolled in STEM 
programs (52.6%), the average grade in math (6.0, 95% 
CI: 6.0–7.0) is, compared to their peers, an additional pre-
dictor for degree completion. Autistic students’ talent for 

systemizing could explain their preponderance for STEM 
programs compared to students with other disabilities or 
neurotypical students (Wei et al., 2017). Regional influ-
ences are unlikely to play a part (Roelfsema et al., 2012).

Limitations and future directions

Potential constraints of the present study must be acknowl-
edged. PSW eliminates confounding by observed variables 
but can be biased if unmeasured factors predict outcomes 
that differ between autistic students and their peers. 
However, all causal modeling approaches that use obser-
vational student data have to deal with this constraint 
(McCaffrey et al., 2013). Therefore, this limitation is not 
specific to PSW.

Furthermore, we studied autistic students who applied 
for academic accommodations, which could bias results to 
more positive outcomes, as students who receive support 
are more likely to persist and complete a degree (Newman 
et al., 2018; Sarid et al., 2020). However, in this study, this 
applies to both autistic students and students with other 
conditions. Still, support should consider students who are 
either undiagnosed at the start of their university studies or 
who decide not to make their diagnosis known to the uni-
versity, who may need additional attention.

Next, the kappa of all models for autistic students is fair 
(Landis & Koch, 1977). However, the optimal model on 
autistic students’ success after 3 years, with an accuracy of 
64.3%, outperformed the NIR of the outcome measure by 
21.4%. Including students’ results from early in their stud-
ies in predictive modeling is likely to improve accuracy. 
Since we wanted to use predictors available before the 
beginning of a student’s academic studies, we did not use 
these measures. More research into predictive models using 
results from early in autistic students’ studies is necessary.

We removed outliers, which implies that the prediction 
models do not cover extreme cases. Although we have 
found these models to be highly predictive of success, 
when supporting autistic students, one should also “expect 
the unexpected.” Additional factors, such as providing 
high-quality and appropriate support, the presence or 
absence of disability stigma during the student’s university 
studies, and social acceptance and support from academic 
peers (Anderson et al., 2017), could play a part. Field-
specific factors that involve internships and research pro-
jects might also have influenced success (Büscher-Touwen 
et al., 2018). However, these features were not available. 
Additional modeling on possible differences between 
autistic students and students within different categories of 
disabilities, such as physical disabilities and mental health, 
would be of interest. However, the number of data points 
was too low. Further research into the influence of these 
aspects is needed.

Finally, although this is a large dataset, sample sizes are 
still relatively small, which lowers the predictive power of 
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these models. To prevent bias as much as possible, we 
applied appropriate methods (Hellas et al., 2018; Vabalas 
et al., 2019). More research with larger samples is needed.

Significance

To our knowledge, this is the first population study to use 
PSW in combination with predictive modeling to predict 
the academic success of autistic students compared to a 
major control group of students with other conditions and 
no conditions. This innovative methodological approach 
demonstrates that the academic success of autistic stu-
dents, with the possible benefits of academic accommoda-
tions, can be predicted. Autistic students with irregular 
pre-educational study paths are more prone to study delays 
or dropping out. The risk of such events happening can be 
predicted based on information easily accessible in most 
institutions, including age and average math grades in sec-
ondary education. Predictive modeling can help talented 
students who might have a higher chance of failure to 
complete college. In addition, universities could further 
tailor transition and support programs (Nachman et al., 
2022), such as summer transition programs (Hotez et al., 
2018), and personal or peer transition coaching (Rando 
et al., 2016), to the specific students’ needs. These addi-
tional programs could also benefit many students with 
health conditions or non-traditional backgrounds.
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Appendix 1

Table 5. Description of variables, measurement scales, and application.

Category Variables Measurement scales Application

Conditions Research group Autism spectrum disorder (AS), Other PSW, PM
 conditions (OC), No conditions (NC)  
Demographics Gender Female, Male PSW, PM
 Age (in years) Age PSW, PM
Secondary education Regular pre-education TRUE = High school VWO, Vocational PM
 foundation year, Degree in higher  
 education, or Foreign degree,  
 FALSE = Other pre-education  
Secondary education 
examination grades

Average grade secondary 
education

1–10 PM
 

Average grade math secondary 1–10 PSW, PM
 education  
Enrollment Cohort 2010, 2011, 2012, 2013, 2014, 2015, PSW
 2016  
 Days between application and 336 to −336 PM
 September 1  
 Parallel program TRUE = Yes, FALSE = No PM
 STEM TRUE = Yes, FALSE = No PM
Student success Success after 3 years Degree, Dropout, Re-enrolled PM

AS: autistic students; OC: students with other conditions; NC: students with no recorded conditions; PM: predictive modeling; PSW: propensity 
score weighting; VWO: Voorbereidend Wetenschappelijk Onderwijs.


