High-Throughput Genotyping of HLA-DRB3, -DRB4, -DRB5, -DQA1, and -DPA1 by Next Generation Sequencing

Isabell Schau¹, Julia Phieler¹, Kathrin Putke¹, Madlen Pahlke¹, Annett Mölle¹, Steffen Klasberg¹, Katharina Daniel¹, Lisa Müller¹, Andrea Heerde¹, Manuela Münch¹, Dominique Wittke¹, Nicole Dietel¹, Jana Heider¹, Anja Klussmeier¹, Jens Pruschke², Daniel Schefzyk², Jan A. Hofmann², Jürgen Sauter², Alexander H. Schmidt^{1,2}, Vinzenz Lange¹

¹DKMS Life Science Lab GmbH, Dresden, GERMANY; ²DKMS, Tuebingen, GERMANY

Motivation

The polymorphic HLA-class II gene families HLA-DR, -DP, and -DQ on chromosome 6 are in strong linkage disequilibrium and inherited together as a haplotype. Nowadays, matching for HLA-A, -B, -C, -DRB1, and -DQB1 loci (10/10 match) is the gold standard for unrelated hematopoietic stem cell transplantation (HSCT). However, there is increasing evidence that all class II loci affect HSCT outcome. Currently, consideration of HLA-DRB3/4/5, -DQA1, and -DPA1 for donor selection is hampered by the very low numbers of donors with available genotyping information in the registries. To overcome this limitation, we extended our genotyping profile for newly registered donors by including HLA-DRB3/4/5, -DQA1, and -DPA1. This reflects the recommendation of the current NMDP matching guidelines to use these genotypes for selection among multiple similar donors. Here, we focus on the implementation of these loci in our high-throughput NGS-workflow.

Workflow

Our genotyping workflow so far covered seven HLA-Loci (A, B, C, E, DRB1, DQB1 and DPB1), the blood groups ABO and rhesus, the CCR5 Δ 32 mutation, the complete KIR gene family and MICA/B. We extended this profile to HLA-DRB3/4/5, -DQA1, and -DPA1 by one additional multiplex PCR reaction. A set of 30 primers targeting exons 2 and 3 was designed to amplify all described allelic variants (Figure 1).

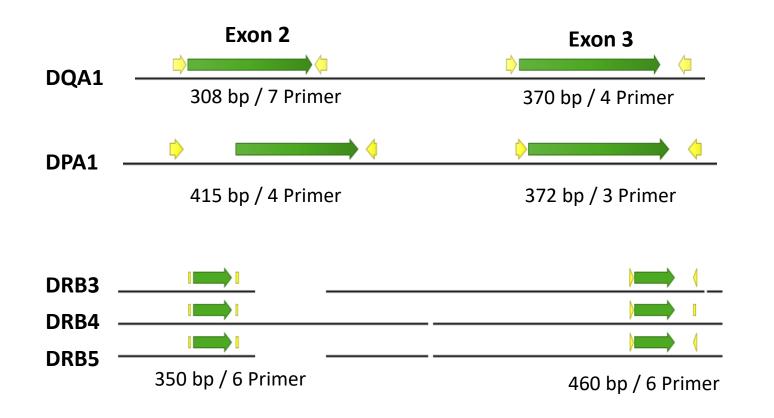
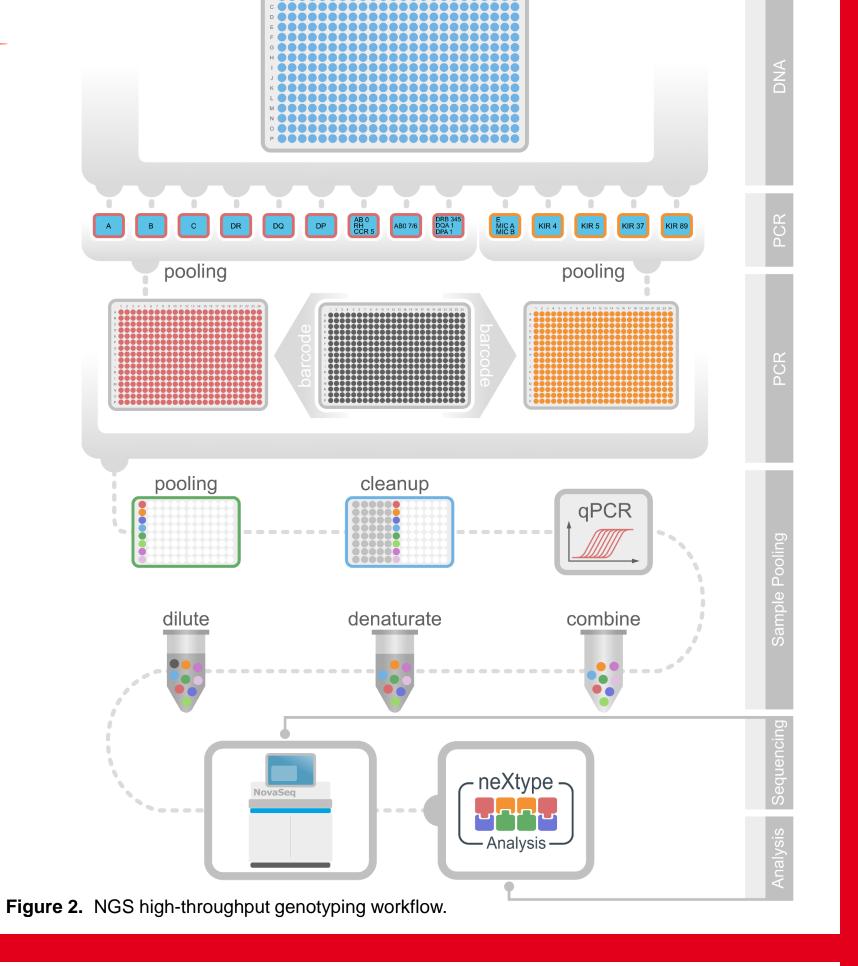



Figure 1. Primer set for the amplification of HLA-DRB3, -DRB4, -DRB5, -DQA1 and -DPA1. Length of the amplification products without adapter sequences and number of primers used. [yellow: primer; green: exon; black lines: genomic sequence, shown as alignment (gaps = nonhomologous regions)].

PCR is performed in 384 well plate format in one multiplex PCR. After pooling with amplicons from other loci, barcoding and cleaning, the samples are subjected to Illumina next-generation sequencing, and then analyzed with our inhouse genotyping software 'neXtype' (Figure 2). Validation of the extended workflow was carried out using a set of 95 reference samples with known genotypes for HLA-DRB3/4/5, -DQA1, and -DPA1. All results were concordant, confirming the fitness of the primer set and software algorithms for application in the highthroughput NGS-workflow.

So far, we analyzed more than 1.1 million samples with this workflow.

Highlights

One challenge of multiplex PCR is finding the optimal balance between all loci and amplicons. We have succeeded in determining a recipe that produces stable amplicons with the required number of reads

However, the ratio of amplicons to exons is a varying quality parameter that accompanies our workflow throughout the year (Figure 3).

Number of samples with novel alleles

700

800

688

per exon.

Reads of amplicons/ exon throughout 2020

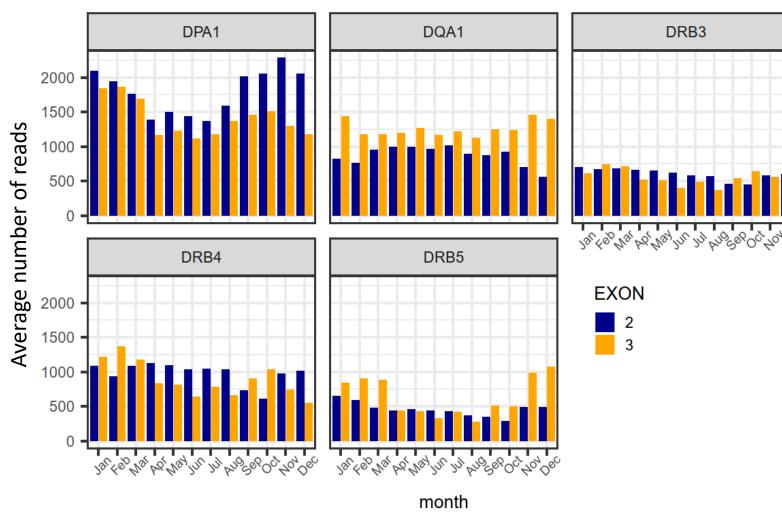


Figure 3. Average read coverage for each amplicon throughout the year 2020.

Conclusion

We started routine operation in October 2019 and genotyped more than 1.1 million potential stem cell donors with the extended profile so far, thereby facilitating the implementation of the current NMDP matching guidelines into clinical practice.

For information about the algorithmic aspect and observed allele frequencies please visit poster P245.

Our analysis software 'neXtype' matches the reads to alleles in the IMGT database. It also flags potentially novel alleles with mismatches to the described allele sequences. In 2020, we identified 1815 samples with sequence mismatches in exon 2 which encodes for the antigen recognition site (Figure 4). This includes both, unique and recurrent novel alleles. We are planning to submit the more frequent variants to the HLA/IMGT database upon characterization of the complete genes with our DR2S workflow.

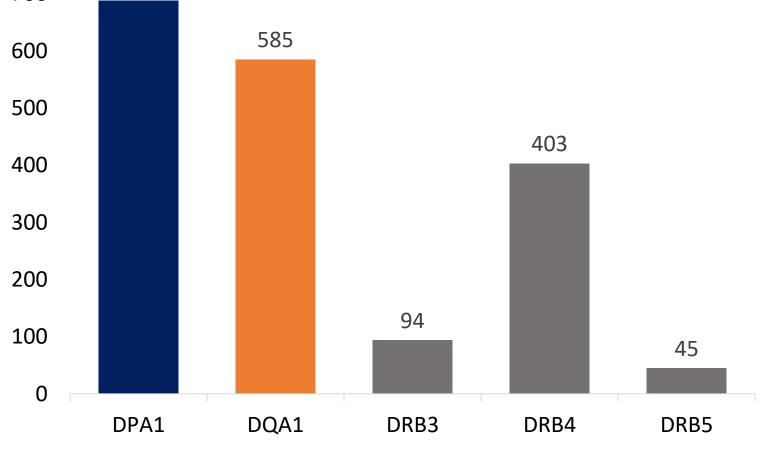


Figure 4. Number of samples with novel alleles identified throughout the year 2020 among 1.1 mio genotyped samples. Only mismatches within exon 2 were considered.

> **DKMS Life Science Lab GmbH** St. Petersburger Str. 2

